@Reference(type=Inproceedings, author={"David. Nist\'er","Henrik. Stew\'enius"}, title="Scalable Recognition with a Vocabulary Tree", year="2006", booktitle="CVPR", pages={"2161","","2168"}, customData={"Date-Added","2010-11-12 09:33:18 +0000","Date-Modified","2010-11-22 15:11:22 +0000"}) public class HierarchicalFloatKMeans extends Object implements SpatialClusterer<HierarchicalFloatKMeansResult,float[]>
HierarchicalFloatKMeans
) is a simple
hierarchical version of FloatKMeans. The algorithm recursively appliesConstructor and Description |
---|
HierarchicalFloatKMeans(int M,
int K,
int depth)
Construct a new
HierarchicalFloatKMeans with the given parameters. |
HierarchicalFloatKMeans(KMeansConfiguration<FloatNearestNeighbours,float[]> config,
int M,
int K,
int depth)
Construct a new
HierarchicalFloatKMeans with the given parameters. |
Modifier and Type | Method and Description |
---|---|
HierarchicalFloatKMeansResult |
cluster(DataSource<float[]> data)
Perform clustering with data from a data source.
|
HierarchicalFloatKMeansResult |
cluster(float[][] data)
Perform clustering on the given data.
|
int[][] |
performClustering(float[][] data) |
public HierarchicalFloatKMeans(KMeansConfiguration<FloatNearestNeighbours,float[]> config, int M, int K, int depth)
HierarchicalFloatKMeans
with the given parameters.config
- configuration for the underlying kmeans clustering.M
- Data dimensionality.K
- Number of clusters per node.depth
- Tree depth.public HierarchicalFloatKMeans(int M, int K, int depth)
HierarchicalFloatKMeans
with the given parameters.
Uses the default parameters of the KMeansConfiguration
.M
- Data dimensionality.K
- Number of clusters per node.depth
- Tree depth.public HierarchicalFloatKMeansResult cluster(float[][] data)
SpatialClusterer
cluster
in interface SpatialClusterer<HierarchicalFloatKMeansResult,float[]>
data
- the data.public int[][] performClustering(float[][] data)
performClustering
in interface Clusterer<float[][]>
public HierarchicalFloatKMeansResult cluster(DataSource<float[]> data)
SpatialClusterer
DataSource
could potentially be backed by disk rather in memory.cluster
in interface SpatialClusterer<HierarchicalFloatKMeansResult,float[]>
data
- the data.