@Reference(type=Inproceedings, author={"David. Nist\'er","Henrik. Stew\'enius"}, title="Scalable Recognition with a Vocabulary Tree", year="2006", booktitle="CVPR", pages={"2161","","2168"}, customData={"Date-Added","2010-11-12 09:33:18 +0000","Date-Modified","2010-11-22 15:11:22 +0000"}) public class HierarchicalLongKMeans extends Object implements SpatialClusterer<HierarchicalLongKMeansResult,long[]>
HierarchicalLongKMeans) is a simple
hierarchical version of LongKMeans. The algorithm recursively applies| Constructor and Description |
|---|
HierarchicalLongKMeans(int M,
int K,
int depth)
Construct a new
HierarchicalLongKMeans with the given parameters. |
HierarchicalLongKMeans(KMeansConfiguration<LongNearestNeighbours,long[]> config,
int M,
int K,
int depth)
Construct a new
HierarchicalLongKMeans with the given parameters. |
| Modifier and Type | Method and Description |
|---|---|
HierarchicalLongKMeansResult |
cluster(DataSource<long[]> data)
Perform clustering with data from a data source.
|
HierarchicalLongKMeansResult |
cluster(long[][] data)
Perform clustering on the given data.
|
int[][] |
performClustering(long[][] data) |
public HierarchicalLongKMeans(KMeansConfiguration<LongNearestNeighbours,long[]> config, int M, int K, int depth)
HierarchicalLongKMeans with the given parameters.config - configuration for the underlying kmeans clustering.M - Data dimensionality.K - Number of clusters per node.depth - Tree depth.public HierarchicalLongKMeans(int M, int K, int depth)
HierarchicalLongKMeans with the given parameters.
Uses the default parameters of the KMeansConfiguration.M - Data dimensionality.K - Number of clusters per node.depth - Tree depth.public HierarchicalLongKMeansResult cluster(long[][] data)
SpatialClusterercluster in interface SpatialClusterer<HierarchicalLongKMeansResult,long[]>data - the data.public int[][] performClustering(long[][] data)
performClustering in interface Clusterer<long[][]>public HierarchicalLongKMeansResult cluster(DataSource<long[]> data)
SpatialClustererDataSource
could potentially be backed by disk rather in memory.cluster in interface SpatialClusterer<HierarchicalLongKMeansResult,long[]>data - the data.