public class RandomSetLongClusterer extends RandomLongClusterer
RandomSetLongClusterer however it is 
 guaranteed that the same training vector will not be sampled more than once.K, M, random, seed| Constructor and Description | 
|---|
| RandomSetLongClusterer(int M)Creates a new random byte cluster used to create K centroids with data containing M elements. | 
| RandomSetLongClusterer(int M,
                      int K)Creates a new random byte cluster used to create centroids with data containing M elements. | 
| Modifier and Type | Method and Description | 
|---|---|
| LongCentroidsResult | cluster(DataSource<long[]> data)Selects K elements from the provided  DataSourceas the centroids of the clusters. | 
| LongCentroidsResult | cluster(long[][] data)Selects K elements from the provided data as the centroids of the clusters. | 
performClustering, setSeedpublic RandomSetLongClusterer(int M)
M - number of elements in each data vectorpublic RandomSetLongClusterer(int M, int K)
M - number of elements in each data vectorK - number of centroids to be createdpublic LongCentroidsResult cluster(long[][] data)
cluster in interface SpatialClusterer<LongCentroidsResult,long[]>cluster in class RandomLongClustererdata - the data.public LongCentroidsResult cluster(DataSource<long[]> data)
DataSource as the centroids of the clusters. 
 If K is -1 all provided data points will be selected. It is guaranteed that the same data 
 point will not be selected many times, though this is not the case if two seperate entries 
 provided are identical.cluster in interface SpatialClusterer<LongCentroidsResult,long[]>cluster in class RandomLongClustererdata - the data.