@Reference(author="Andre F. T. Martins", title="The Geometry of Constrained Structured Prediction: Applications to Inference and Learning of Natural Language Syntax", type=Phdthesis, year="2012") public class BilinearUnmixedSparseOnlineLearner extends BilinearSparseOnlineLearner
Data is dealt with sequentially using a one pass implementation of the online proximal algorithm described in chapter 9 and 10 of: The Geometry of Constrained Structured Prediction: Applications to Inference and Learning of Natural Language Syntax, PhD, Andre T. Martins
 This is a direct extension of the BilinearSparseOnlineLearner but
 instead of a mixed update scheme (i.e. for a number of iterations W and U are
 updated synchronously) we have an unmixed scheme where W is updated for a
 number of iterations, followed by U for a number of iterations continuing as
 a whole for a number of iterations
 
The implementation does the following:
| Constructor and Description | 
|---|
BilinearUnmixedSparseOnlineLearner()  | 
| Modifier and Type | Method and Description | 
|---|---|
protected gov.sandia.cognition.math.matrix.Matrix | 
updateU(gov.sandia.cognition.math.matrix.Matrix currentU,
       gov.sandia.cognition.math.matrix.Matrix neww,
       double uLossWeighted,
       double weightedLambda)  | 
protected gov.sandia.cognition.math.matrix.Matrix | 
updateW(gov.sandia.cognition.math.matrix.Matrix currentW,
       double wLossWeighted,
       double weightedLambda)  | 
addU, addW, binaryHeader, clone, etat, expandY, getBias, getParams, getU, getW, predict, process, readBinary, reinitParams, setU, setW, updateBias, writeBinarypublic BilinearUnmixedSparseOnlineLearner()
protected gov.sandia.cognition.math.matrix.Matrix updateW(gov.sandia.cognition.math.matrix.Matrix currentW, double wLossWeighted, double weightedLambda)
updateW in class BilinearSparseOnlineLearnerprotected gov.sandia.cognition.math.matrix.Matrix updateU(gov.sandia.cognition.math.matrix.Matrix currentU, gov.sandia.cognition.math.matrix.Matrix neww, double uLossWeighted, double weightedLambda)
updateU in class BilinearSparseOnlineLearner