public static class LongKDTree.RandomisedBBFMeanSplit extends Object implements LongKDTree.SplitChooser
| Constructor and Description |
|---|
RandomisedBBFMeanSplit()
Construct with the default values of 14 points per leaf (max), 128
samples for computing variance, and the 5 most varying dimensions
randomly selected.
|
RandomisedBBFMeanSplit(int maxLeafSize,
int varianceMaxPoints,
int randomMaxDims,
cern.jet.random.Uniform uniform)
Construct with the given values.
|
RandomisedBBFMeanSplit(cern.jet.random.Uniform uniform)
Construct with the default values of 14 points per leaf (max), 128
samples for computing variance, and the 5 most varying dimensions
randomly selected.
|
| Modifier and Type | Method and Description |
|---|---|
IntLongPair |
chooseSplit(long[][] pnts,
IntArrayView inds,
int depth,
long[] minBounds,
long[] maxBounds)
Choose the dimension and discriminant on which to split the data.
|
public RandomisedBBFMeanSplit()
MersenneTwister is created as the
source for random numbers.public RandomisedBBFMeanSplit(cern.jet.random.Uniform uniform)
MersenneTwister is created as the
source for random numbers.uniform - the random number sourcepublic RandomisedBBFMeanSplit(int maxLeafSize, int varianceMaxPoints, int randomMaxDims, cern.jet.random.Uniform uniform)
maxLeafSize - Maximum number of items in a leaf.varianceMaxPoints - Maximum number of points of variance estimation; all
points used if <=0.randomMaxDims - Number of dimensions to consider when randomly selecting
one with a big variance.uniform - the random number sourcepublic IntLongPair chooseSplit(long[][] pnts, IntArrayView inds, int depth, long[] minBounds, long[] maxBounds)
LongKDTree.SplitChooserchooseSplit in interface LongKDTree.SplitChooserpnts - the raw datainds - the indices of the data under considerationdepth - the depth of the current data in the treeminBounds - the minimum boundsmaxBounds - the maximum bounds