public class FloatFFT_3D extends Object
Constructor and Description |
---|
FloatFFT_3D(int slices,
int rows,
int columns)
Creates new instance of FloatFFT_3D.
|
Modifier and Type | Method and Description |
---|---|
void |
complexForward(float[] a)
Computes 3D forward DFT of complex data leaving the result in
a . |
void |
complexForward(float[][][] a)
Computes 3D forward DFT of complex data leaving the result in
a . |
void |
complexInverse(float[][][] a,
boolean scale)
Computes 3D inverse DFT of complex data leaving the result in
a . |
void |
complexInverse(float[] a,
boolean scale)
Computes 3D inverse DFT of complex data leaving the result in
a . |
void |
realForward(float[] a)
Computes 3D forward DFT of real data leaving the result in
a
. |
void |
realForward(float[][][] a)
Computes 3D forward DFT of real data leaving the result in
a
. |
void |
realForwardFull(float[] a)
Computes 3D forward DFT of real data leaving the result in
a
. |
void |
realForwardFull(float[][][] a)
Computes 3D forward DFT of real data leaving the result in
a
. |
void |
realInverse(float[][][] a,
boolean scale)
Computes 3D inverse DFT of real data leaving the result in
a
. |
void |
realInverse(float[] a,
boolean scale)
Computes 3D inverse DFT of real data leaving the result in
a
. |
void |
realInverseFull(float[][][] a,
boolean scale)
Computes 3D inverse DFT of real data leaving the result in
a
. |
void |
realInverseFull(float[] a,
boolean scale)
Computes 3D inverse DFT of real data leaving the result in
a
. |
public FloatFFT_3D(int slices, int rows, int columns)
slices
- number of slicesrows
- number of rowscolumns
- number of columnspublic void complexForward(float[] a)
a
. The data is stored in 1D array addressed in slice-major,
then row-major, then column-major, in order of significance, i.e. element
(i,j,k) of 3D array x[slices][rows][2*columns] is stored in a[i*sliceStride +
j*rowStride + k], where sliceStride = rows * 2 * columns and rowStride = 2 * columns.
Complex number is stored as two float values in sequence: the real and
imaginary part, i.e. the input array must be of size slices*rows*2*columns. The
physical layout of the input data is as follows:
a[k1*sliceStride + k2*rowStride + 2*k3] = Re[k1][k2][k3], a[k1*sliceStride + k2*rowStride + 2*k3+1] = Im[k1][k2][k3], 0<=k1<slices, 0<=k2<rows, 0<=k3<columns,
a
- data to transformpublic void complexForward(float[][][] a)
a
. The data is stored in 3D array. Complex data is
represented by 2 float values in sequence: the real and imaginary part,
i.e. the input array must be of size slices by rows by 2*columns. The physical
layout of the input data is as follows:
a[k1][k2][2*k3] = Re[k1][k2][k3], a[k1][k2][2*k3+1] = Im[k1][k2][k3], 0<=k1<slices, 0<=k2<rows, 0<=k3<columns,
a
- data to transformpublic void complexInverse(float[] a, boolean scale)
a
. The data is stored in a 1D array addressed in
slice-major, then row-major, then column-major, in order of significance,
i.e. element (i,j,k) of 3-d array x[slices][rows][2*columns] is stored in
a[i*sliceStride + j*rowStride + k], where sliceStride = rows * 2 * columns and
rowStride = 2 * columns. Complex number is stored as two float values in
sequence: the real and imaginary part, i.e. the input array must be of
size slices*rows*2*columns. The physical layout of the input data is as follows:
a[k1*sliceStride + k2*rowStride + 2*k3] = Re[k1][k2][k3], a[k1*sliceStride + k2*rowStride + 2*k3+1] = Im[k1][k2][k3], 0<=k1<slices, 0<=k2<rows, 0<=k3<columns,
a
- data to transformscale
- if true then scaling is performedpublic void complexInverse(float[][][] a, boolean scale)
a
. The data is stored in a 3D array. Complex data is
represented by 2 float values in sequence: the real and imaginary part,
i.e. the input array must be of size slices by rows by 2*columns. The physical
layout of the input data is as follows:
a[k1][k2][2*k3] = Re[k1][k2][k3], a[k1][k2][2*k3+1] = Im[k1][k2][k3], 0<=k1<slices, 0<=k2<rows, 0<=k3<columns,
a
- data to transformscale
- if true then scaling is performedpublic void realForward(float[] a)
a
. This method only works when the sizes of all three dimensions are
power-of-two numbers. The data is stored in a 1D array addressed in
slice-major, then row-major, then column-major, in order of significance,
i.e. element (i,j,k) of 3-d array x[slices][rows][2*columns] is stored in
a[i*sliceStride + j*rowStride + k], where sliceStride = rows * 2 * columns and
rowStride = 2 * columns. The physical layout of the output data is as follows:
a[k1*sliceStride + k2*rowStride + 2*k3] = Re[k1][k2][k3] = Re[(slices-k1)%slices][(rows-k2)%rows][columns-k3], a[k1*sliceStride + k2*rowStride + 2*k3+1] = Im[k1][k2][k3] = -Im[(slices-k1)%slices][(rows-k2)%rows][columns-k3], 0<=k1<slices, 0<=k2<rows, 0<k3<columns/2, a[k1*sliceStride + k2*rowStride] = Re[k1][k2][0] = Re[(slices-k1)%slices][rows-k2][0], a[k1*sliceStride + k2*rowStride + 1] = Im[k1][k2][0] = -Im[(slices-k1)%slices][rows-k2][0], a[k1*sliceStride + (rows-k2)*rowStride + 1] = Re[(slices-k1)%slices][k2][columns/2] = Re[k1][rows-k2][columns/2], a[k1*sliceStride + (rows-k2)*rowStride] = -Im[(slices-k1)%slices][k2][columns/2] = Im[k1][rows-k2][columns/2], 0<=k1<slices, 0<k2<rows/2, a[k1*sliceStride] = Re[k1][0][0] = Re[slices-k1][0][0], a[k1*sliceStride + 1] = Im[k1][0][0] = -Im[slices-k1][0][0], a[k1*sliceStride + (rows/2)*rowStride] = Re[k1][rows/2][0] = Re[slices-k1][rows/2][0], a[k1*sliceStride + (rows/2)*rowStride + 1] = Im[k1][rows/2][0] = -Im[slices-k1][rows/2][0], a[(slices-k1)*sliceStride + 1] = Re[k1][0][columns/2] = Re[slices-k1][0][columns/2], a[(slices-k1)*sliceStride] = -Im[k1][0][columns/2] = Im[slices-k1][0][columns/2], a[(slices-k1)*sliceStride + (rows/2)*rowStride + 1] = Re[k1][rows/2][columns/2] = Re[slices-k1][rows/2][columns/2], a[(slices-k1)*sliceStride + (rows/2) * rowStride] = -Im[k1][rows/2][columns/2] = Im[slices-k1][rows/2][columns/2], 0<k1<slices/2, a[0] = Re[0][0][0], a[1] = Re[0][0][columns/2], a[(rows/2)*rowStride] = Re[0][rows/2][0], a[(rows/2)*rowStride + 1] = Re[0][rows/2][columns/2], a[(slices/2)*sliceStride] = Re[slices/2][0][0], a[(slices/2)*sliceStride + 1] = Re[slices/2][0][columns/2], a[(slices/2)*sliceStride + (rows/2)*rowStride] = Re[slices/2][rows/2][0], a[(slices/2)*sliceStride + (rows/2)*rowStride + 1] = Re[slices/2][rows/2][columns/2]This method computes only half of the elements of the real transform. The other half satisfies the symmetry condition. If you want the full real forward transform, use
realForwardFull
. To get back the
original data, use realInverse
on the output of this method.a
- data to transformpublic void realForward(float[][][] a)
a
. This method only works when the sizes of all three dimensions are
power-of-two numbers. The data is stored in a 3D array. The physical
layout of the output data is as follows:
a[k1][k2][2*k3] = Re[k1][k2][k3] = Re[(slices-k1)%slices][(rows-k2)%rows][columns-k3], a[k1][k2][2*k3+1] = Im[k1][k2][k3] = -Im[(slices-k1)%slices][(rows-k2)%rows][columns-k3], 0<=k1<slices, 0<=k2<rows, 0<k3<columns/2, a[k1][k2][0] = Re[k1][k2][0] = Re[(slices-k1)%slices][rows-k2][0], a[k1][k2][1] = Im[k1][k2][0] = -Im[(slices-k1)%slices][rows-k2][0], a[k1][rows-k2][1] = Re[(slices-k1)%slices][k2][columns/2] = Re[k1][rows-k2][columns/2], a[k1][rows-k2][0] = -Im[(slices-k1)%slices][k2][columns/2] = Im[k1][rows-k2][columns/2], 0<=k1<slices, 0<k2<rows/2, a[k1][0][0] = Re[k1][0][0] = Re[slices-k1][0][0], a[k1][0][1] = Im[k1][0][0] = -Im[slices-k1][0][0], a[k1][rows/2][0] = Re[k1][rows/2][0] = Re[slices-k1][rows/2][0], a[k1][rows/2][1] = Im[k1][rows/2][0] = -Im[slices-k1][rows/2][0], a[slices-k1][0][1] = Re[k1][0][columns/2] = Re[slices-k1][0][columns/2], a[slices-k1][0][0] = -Im[k1][0][columns/2] = Im[slices-k1][0][columns/2], a[slices-k1][rows/2][1] = Re[k1][rows/2][columns/2] = Re[slices-k1][rows/2][columns/2], a[slices-k1][rows/2][0] = -Im[k1][rows/2][columns/2] = Im[slices-k1][rows/2][columns/2], 0<k1<slices/2, a[0][0][0] = Re[0][0][0], a[0][0][1] = Re[0][0][columns/2], a[0][rows/2][0] = Re[0][rows/2][0], a[0][rows/2][1] = Re[0][rows/2][columns/2], a[slices/2][0][0] = Re[slices/2][0][0], a[slices/2][0][1] = Re[slices/2][0][columns/2], a[slices/2][rows/2][0] = Re[slices/2][rows/2][0], a[slices/2][rows/2][1] = Re[slices/2][rows/2][columns/2]This method computes only half of the elements of the real transform. The other half satisfies the symmetry condition. If you want the full real forward transform, use
realForwardFull
. To get back the
original data, use realInverse
on the output of this method.a
- data to transformpublic void realForwardFull(float[] a)
a
. This method computes full real forward transform, i.e. you will get the
same result as from complexForward
called with all imaginary
part equal 0. Because the result is stored in a
, the input
array must be of size slices*rows*2*columns, with only the first slices*rows*columns elements
filled with real data. To get back the original data, use
complexInverse
on the output of this method.a
- data to transformpublic void realForwardFull(float[][][] a)
a
. This method computes full real forward transform, i.e. you will get the
same result as from complexForward
called with all imaginary
part equal 0. Because the result is stored in a
, the input
array must be of size slices by rows by 2*columns, with only the first slices by rows by
columns elements filled with real data. To get back the original data, use
complexInverse
on the output of this method.a
- data to transformpublic void realInverse(float[] a, boolean scale)
a
. This method only works when the sizes of all three dimensions are
power-of-two numbers. The data is stored in a 1D array addressed in
slice-major, then row-major, then column-major, in order of significance,
i.e. element (i,j,k) of 3-d array x[slices][rows][2*columns] is stored in
a[i*sliceStride + j*rowStride + k], where sliceStride = rows * 2 * columns and
rowStride = 2 * columns. The physical layout of the input data has to be as
follows:
a[k1*sliceStride + k2*rowStride + 2*k3] = Re[k1][k2][k3] = Re[(slices-k1)%slices][(rows-k2)%rows][columns-k3], a[k1*sliceStride + k2*rowStride + 2*k3+1] = Im[k1][k2][k3] = -Im[(slices-k1)%slices][(rows-k2)%rows][columns-k3], 0<=k1<slices, 0<=k2<rows, 0<k3<columns/2, a[k1*sliceStride + k2*rowStride] = Re[k1][k2][0] = Re[(slices-k1)%slices][rows-k2][0], a[k1*sliceStride + k2*rowStride + 1] = Im[k1][k2][0] = -Im[(slices-k1)%slices][rows-k2][0], a[k1*sliceStride + (rows-k2)*rowStride + 1] = Re[(slices-k1)%slices][k2][columns/2] = Re[k1][rows-k2][columns/2], a[k1*sliceStride + (rows-k2)*rowStride] = -Im[(slices-k1)%slices][k2][columns/2] = Im[k1][rows-k2][columns/2], 0<=k1<slices, 0<k2<rows/2, a[k1*sliceStride] = Re[k1][0][0] = Re[slices-k1][0][0], a[k1*sliceStride + 1] = Im[k1][0][0] = -Im[slices-k1][0][0], a[k1*sliceStride + (rows/2)*rowStride] = Re[k1][rows/2][0] = Re[slices-k1][rows/2][0], a[k1*sliceStride + (rows/2)*rowStride + 1] = Im[k1][rows/2][0] = -Im[slices-k1][rows/2][0], a[(slices-k1)*sliceStride + 1] = Re[k1][0][columns/2] = Re[slices-k1][0][columns/2], a[(slices-k1)*sliceStride] = -Im[k1][0][columns/2] = Im[slices-k1][0][columns/2], a[(slices-k1)*sliceStride + (rows/2)*rowStride + 1] = Re[k1][rows/2][columns/2] = Re[slices-k1][rows/2][columns/2], a[(slices-k1)*sliceStride + (rows/2) * rowStride] = -Im[k1][rows/2][columns/2] = Im[slices-k1][rows/2][columns/2], 0<k1<slices/2, a[0] = Re[0][0][0], a[1] = Re[0][0][columns/2], a[(rows/2)*rowStride] = Re[0][rows/2][0], a[(rows/2)*rowStride + 1] = Re[0][rows/2][columns/2], a[(slices/2)*sliceStride] = Re[slices/2][0][0], a[(slices/2)*sliceStride + 1] = Re[slices/2][0][columns/2], a[(slices/2)*sliceStride + (rows/2)*rowStride] = Re[slices/2][rows/2][0], a[(slices/2)*sliceStride + (rows/2)*rowStride + 1] = Re[slices/2][rows/2][columns/2]This method computes only half of the elements of the real transform. The other half satisfies the symmetry condition. If you want the full real inverse transform, use
realInverseFull
.a
- data to transformscale
- if true then scaling is performedpublic void realInverse(float[][][] a, boolean scale)
a
. This method only works when the sizes of all three dimensions are
power-of-two numbers. The data is stored in a 3D array. The physical
layout of the input data has to be as follows:
a[k1][k2][2*k3] = Re[k1][k2][k3] = Re[(slices-k1)%slices][(rows-k2)%rows][columns-k3], a[k1][k2][2*k3+1] = Im[k1][k2][k3] = -Im[(slices-k1)%slices][(rows-k2)%rows][columns-k3], 0<=k1<slices, 0<=k2<rows, 0<k3<columns/2, a[k1][k2][0] = Re[k1][k2][0] = Re[(slices-k1)%slices][rows-k2][0], a[k1][k2][1] = Im[k1][k2][0] = -Im[(slices-k1)%slices][rows-k2][0], a[k1][rows-k2][1] = Re[(slices-k1)%slices][k2][columns/2] = Re[k1][rows-k2][columns/2], a[k1][rows-k2][0] = -Im[(slices-k1)%slices][k2][columns/2] = Im[k1][rows-k2][columns/2], 0<=k1<slices, 0<k2<rows/2, a[k1][0][0] = Re[k1][0][0] = Re[slices-k1][0][0], a[k1][0][1] = Im[k1][0][0] = -Im[slices-k1][0][0], a[k1][rows/2][0] = Re[k1][rows/2][0] = Re[slices-k1][rows/2][0], a[k1][rows/2][1] = Im[k1][rows/2][0] = -Im[slices-k1][rows/2][0], a[slices-k1][0][1] = Re[k1][0][columns/2] = Re[slices-k1][0][columns/2], a[slices-k1][0][0] = -Im[k1][0][columns/2] = Im[slices-k1][0][columns/2], a[slices-k1][rows/2][1] = Re[k1][rows/2][columns/2] = Re[slices-k1][rows/2][columns/2], a[slices-k1][rows/2][0] = -Im[k1][rows/2][columns/2] = Im[slices-k1][rows/2][columns/2], 0<k1<slices/2, a[0][0][0] = Re[0][0][0], a[0][0][1] = Re[0][0][columns/2], a[0][rows/2][0] = Re[0][rows/2][0], a[0][rows/2][1] = Re[0][rows/2][columns/2], a[slices/2][0][0] = Re[slices/2][0][0], a[slices/2][0][1] = Re[slices/2][0][columns/2], a[slices/2][rows/2][0] = Re[slices/2][rows/2][0], a[slices/2][rows/2][1] = Re[slices/2][rows/2][columns/2]This method computes only half of the elements of the real transform. The other half satisfies the symmetry condition. If you want the full real inverse transform, use
realInverseFull
.a
- data to transformscale
- if true then scaling is performedpublic void realInverseFull(float[] a, boolean scale)
a
. This method computes full real inverse transform, i.e. you will get the
same result as from complexInverse
called with all imaginary
part equal 0. Because the result is stored in a
, the input
array must be of size slices*rows*2*columns, with only the first slices*rows*columns elements
filled with real data.a
- data to transformscale
- if true then scaling is performedpublic void realInverseFull(float[][][] a, boolean scale)
a
. This method computes full real inverse transform, i.e. you will get the
same result as from complexInverse
called with all imaginary
part equal 0. Because the result is stored in a
, the input
array must be of size slices by rows by 2*columns, with only the first slices by rows by
columns elements filled with real data.a
- data to transformscale
- if true then scaling is performed