@Reference(type=Inproceedings, author={"Viola, P.","Jones, M."}, title="Rapid object detection using a boosted cascade of simple features", year="2001", booktitle="Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on", pages={" I","511 "," I","518 vol.1"}, number="", volume="1", customData={"keywords"," AdaBoost; background regions; boosted simple feature cascade; classifiers; face detection; image processing; image representation; integral image; machine learning; object specific focus-of-attention mechanism; rapid object detection; real-time applications; statistical guarantees; visual object detection; feature extraction; image classification; image representation; learning (artificial intelligence); object detection;","doi","10.1109/CVPR.2001.990517","ISSN","1063-6919 "}) public class HaarFeatureClassifier extends Object implements Classifier
ValueClassifier
s. If it is a tree, then the left and/or
right nodes will be HaarFeatureClassifier
s.Constructor and Description |
---|
HaarFeatureClassifier(HaarFeature feature,
float threshold,
Classifier left,
Classifier right)
Construct with the given feature, threshold and left/right nodes.
|
Modifier and Type | Method and Description |
---|---|
float |
classify(SummedSqTiltAreaTable sat,
float wvNorm,
int x,
int y)
Get the classification score for the window at (x, y) with the size
defined by scale.
|
void |
updateCaches(StageTreeClassifier cascade)
Update the caches for a given scale (given by the
cachedScale of the StageTreeClassifier ). |
public HaarFeatureClassifier(HaarFeature feature, float threshold, Classifier left, Classifier right)
feature
- the feature on which the classifier is based.threshold
- the threshold for the classifier.left
- the classifier to invoke if the feature response is less than
the thresholdright
- the classifier to invoke if the feature response is greater
than or equal to the thresholdpublic float classify(SummedSqTiltAreaTable sat, float wvNorm, int x, int y)
Classifier
classify
in interface Classifier
sat
- the summed area tables (integral images)wvNorm
- the normalisation based on the current window variancex
- the x-ordinate of the top-left of the window being testedy
- the y-ordinate of the top-left of the window being testedpublic void updateCaches(StageTreeClassifier cascade)
Classifier
cachedScale
of the StageTreeClassifier
).updateCaches
in interface Classifier
cascade
- the tree of stages