Package | Description |
---|---|
org.openimaj.knn | |
org.openimaj.knn.approximate | |
org.openimaj.knn.pq | |
org.openimaj.ml.clustering.assignment.soft | |
org.openimaj.ml.clustering.kmeans |
K-Means in OpenIMAJ is designed to be both extremely fast and flexible.
|
Modifier and Type | Class and Description |
---|---|
class |
FloatNearestNeighboursExact
Exact (brute-force) k-nearest-neighbour implementation.
|
Modifier and Type | Method and Description |
---|---|
FloatNearestNeighbours |
FloatNearestNeighboursProvider.getNearestNeighbours() |
Modifier and Type | Class and Description |
---|---|
class |
FloatNearestNeighboursKDTree
Fast Nearest-Neighbours for float data using an ensemble of Best-Bin-First KDTrees.
|
Modifier and Type | Class and Description |
---|---|
class |
FloatADCNearestNeighbours
Nearest-neighbours using Asymmetric Distance Computation (ADC) on Product
Quantised vectors.
|
class |
FloatSDCNearestNeighbours
Nearest-neighbours using Symmetric Distance Computation (SDC) on Product
Quantised vectors.
|
class |
IncrementalFloatADCNearestNeighbours
Incremental Nearest-neighbours using Asymmetric Distance Computation (ADC)
on Product Quantised vectors.
|
Modifier and Type | Field and Description |
---|---|
protected FloatNearestNeighbours |
FloatKNNAssigner.nn |
Modifier and Type | Field and Description |
---|---|
protected FloatNearestNeighbours |
FloatKMeans.Result.nn |
Modifier and Type | Method and Description |
---|---|
FloatNearestNeighbours |
FloatKMeans.Result.getNearestNeighbours() |
Modifier and Type | Method and Description |
---|---|
KMeansConfiguration<FloatNearestNeighbours,float[]> |
FloatKMeans.getConfiguration()
Get the configuration
|
Modifier and Type | Method and Description |
---|---|
void |
FloatKMeans.setConfiguration(KMeansConfiguration<FloatNearestNeighbours,float[]> conf)
Set the configuration
|
Constructor and Description |
---|
FloatKMeans(KMeansConfiguration<FloatNearestNeighbours,float[]> conf)
Construct the clusterer with the the given configuration.
|
HierarchicalFloatKMeans(KMeansConfiguration<FloatNearestNeighbours,float[]> config,
int M,
int K,
int depth)
Construct a new
HierarchicalFloatKMeans with the given parameters. |