Package | Description |
---|---|
org.openimaj.knn | |
org.openimaj.knn.approximate | |
org.openimaj.knn.pq | |
org.openimaj.ml.clustering.assignment.soft | |
org.openimaj.ml.clustering.kmeans |
K-Means in OpenIMAJ is designed to be both extremely fast and flexible.
|
Modifier and Type | Class and Description |
---|---|
class |
LongNearestNeighboursExact
Exact (brute-force) k-nearest-neighbour implementation.
|
Modifier and Type | Method and Description |
---|---|
LongNearestNeighbours |
LongNearestNeighboursProvider.getNearestNeighbours() |
Modifier and Type | Class and Description |
---|---|
class |
LongNearestNeighboursKDTree
Fast Nearest-Neighbours for long data using an ensemble of Best-Bin-First KDTrees.
|
Modifier and Type | Class and Description |
---|---|
class |
IncrementalLongADCNearestNeighbours
Incremental Nearest-neighbours using Asymmetric Distance Computation (ADC)
on Product Quantised vectors.
|
class |
LongADCNearestNeighbours
Nearest-neighbours using Asymmetric Distance Computation (ADC) on Product
Quantised vectors.
|
class |
LongSDCNearestNeighbours
Nearest-neighbours using Symmetric Distance Computation (SDC) on Product
Quantised vectors.
|
Modifier and Type | Field and Description |
---|---|
protected LongNearestNeighbours |
LongKNNAssigner.nn |
Modifier and Type | Field and Description |
---|---|
protected LongNearestNeighbours |
LongKMeans.Result.nn |
Modifier and Type | Method and Description |
---|---|
LongNearestNeighbours |
LongKMeans.Result.getNearestNeighbours() |
Modifier and Type | Method and Description |
---|---|
KMeansConfiguration<LongNearestNeighbours,long[]> |
LongKMeans.getConfiguration()
Get the configuration
|
Modifier and Type | Method and Description |
---|---|
void |
LongKMeans.setConfiguration(KMeansConfiguration<LongNearestNeighbours,long[]> conf)
Set the configuration
|
Constructor and Description |
---|
HierarchicalLongKMeans(KMeansConfiguration<LongNearestNeighbours,long[]> config,
int M,
int K,
int depth)
Construct a new
HierarchicalLongKMeans with the given parameters. |
LongKMeans(KMeansConfiguration<LongNearestNeighbours,long[]> conf)
Construct the clusterer with the the given configuration.
|