public class CovarPrincipalComponentAnalysis extends PrincipalComponentAnalysis
SvdPrincipalComponentAnalysis and ThinSvdPrincipalComponentAnalysis
implementations are much faster and more efficient.PrincipalComponentAnalysis.ComponentSelector, PrincipalComponentAnalysis.EnergyThresholdComponentSelector, PrincipalComponentAnalysis.NumberComponentSelector, PrincipalComponentAnalysis.PercentageEnergyComponentSelectorbasis, eigenvalues, mean| Constructor and Description |
|---|
CovarPrincipalComponentAnalysis()
Construct a
CovarPrincipalComponentAnalysis that
will extract all the eigenvectors. |
CovarPrincipalComponentAnalysis(int ndims)
Construct a
CovarPrincipalComponentAnalysis that
will extract the n best eigenvectors. |
| Modifier and Type | Method and Description |
|---|---|
protected void |
learnBasisNorm(Jama.Matrix m)
Learn the PCA basis from the centered data provided.
|
buildNormalisedDataMatrix, generate, getBasis, getCumulativeEnergies, getCumulativeEnergy, getEigenValue, getEigenValues, getEigenVectors, getMean, getPrincipalComponent, getStandardDeviations, getStandardDeviations, learnBasis, learnBasis, learnBasis, project, project, selectSubset, selectSubset, selectSubsetEnergyThreshold, selectSubsetPercentageEnergy, toStringpublic CovarPrincipalComponentAnalysis()
CovarPrincipalComponentAnalysis that
will extract all the eigenvectors.public CovarPrincipalComponentAnalysis(int ndims)
CovarPrincipalComponentAnalysis that
will extract the n best eigenvectors.ndims - the number of eigenvectors to select.protected void learnBasisNorm(Jama.Matrix m)
PrincipalComponentAnalysislearnBasisNorm in class PrincipalComponentAnalysis