public class CovarPrincipalComponentAnalysis extends PrincipalComponentAnalysis
SvdPrincipalComponentAnalysis
and ThinSvdPrincipalComponentAnalysis
implementations are much faster and more efficient.PrincipalComponentAnalysis.ComponentSelector, PrincipalComponentAnalysis.EnergyThresholdComponentSelector, PrincipalComponentAnalysis.NumberComponentSelector, PrincipalComponentAnalysis.PercentageEnergyComponentSelector
basis, eigenvalues, mean
Constructor and Description |
---|
CovarPrincipalComponentAnalysis()
Construct a
CovarPrincipalComponentAnalysis that
will extract all the eigenvectors. |
CovarPrincipalComponentAnalysis(int ndims)
Construct a
CovarPrincipalComponentAnalysis that
will extract the n best eigenvectors. |
Modifier and Type | Method and Description |
---|---|
protected void |
learnBasisNorm(Jama.Matrix m)
Learn the PCA basis from the centered data provided.
|
buildNormalisedDataMatrix, generate, getBasis, getCumulativeEnergies, getCumulativeEnergy, getEigenValue, getEigenValues, getEigenVectors, getMean, getPrincipalComponent, getStandardDeviations, getStandardDeviations, learnBasis, learnBasis, learnBasis, project, project, selectSubset, selectSubset, selectSubsetEnergyThreshold, selectSubsetPercentageEnergy, toString
public CovarPrincipalComponentAnalysis()
CovarPrincipalComponentAnalysis
that
will extract all the eigenvectors.public CovarPrincipalComponentAnalysis(int ndims)
CovarPrincipalComponentAnalysis
that
will extract the n best eigenvectors.ndims
- the number of eigenvectors to select.protected void learnBasisNorm(Jama.Matrix m)
PrincipalComponentAnalysis
learnBasisNorm
in class PrincipalComponentAnalysis