T
- The type of class/category predicted by the modelpublic class GaussianVectorNaiveBayesModel<T> extends Object implements EstimatableModel<double[],T>
EstimatableModel
that uses a
VectorNaiveBayesCategorizer
to associate vectors (actually double[])
with a category based on the naive bayes model.Constructor and Description |
---|
GaussianVectorNaiveBayesModel() |
Modifier and Type | Method and Description |
---|---|
GaussianVectorNaiveBayesModel<T> |
clone()
Clone the model
|
boolean |
estimate(List<? extends IndependentPair<double[],T>> data)
Estimates the model from the observations in the list of data.
|
static void |
main(String[] args)
Testing
|
int |
numItemsToEstimate() |
T |
predict(double[] data)
Uses the model to predict dependent data from an independent value.
|
public GaussianVectorNaiveBayesModel()
public boolean estimate(List<? extends IndependentPair<double[],T>> data)
EstimatableModel
EstimatableModel.numItemsToEstimate()
pairs of dependent
and independent data. It may contain more, in which case the estimate
method may choose to make use of this data for validation, or obtaining a
better model by a least squares method for example.estimate
in interface EstimatableModel<double[],T>
data
- Data with which to estimate the modelEstimatableModel.numItemsToEstimate()
public T predict(double[] data)
Model
public int numItemsToEstimate()
numItemsToEstimate
in interface EstimatableModel<double[],T>
public GaussianVectorNaiveBayesModel<T> clone()
EstimatableModel
clone
in interface EstimatableModel<double[],T>
clone
in class Object