T - The type of class/category predicted by the modelpublic class GaussianVectorNaiveBayesModel<T> extends Object implements EstimatableModel<double[],T>
EstimatableModel that uses a
VectorNaiveBayesCategorizer to associate vectors (actually double[])
with a category based on the naive bayes model.| Constructor and Description |
|---|
GaussianVectorNaiveBayesModel() |
| Modifier and Type | Method and Description |
|---|---|
GaussianVectorNaiveBayesModel<T> |
clone()
Clone the model
|
boolean |
estimate(List<? extends IndependentPair<double[],T>> data)
Estimates the model from the observations in the list of data.
|
static void |
main(String[] args)
Testing
|
int |
numItemsToEstimate() |
T |
predict(double[] data)
Uses the model to predict dependent data from an independent value.
|
public GaussianVectorNaiveBayesModel()
public boolean estimate(List<? extends IndependentPair<double[],T>> data)
EstimatableModelEstimatableModel.numItemsToEstimate() pairs of dependent
and independent data. It may contain more, in which case the estimate
method may choose to make use of this data for validation, or obtaining a
better model by a least squares method for example.estimate in interface EstimatableModel<double[],T>data - Data with which to estimate the modelEstimatableModel.numItemsToEstimate()public T predict(double[] data)
Modelpublic int numItemsToEstimate()
numItemsToEstimate in interface EstimatableModel<double[],T>public GaussianVectorNaiveBayesModel<T> clone()
EstimatableModelclone in interface EstimatableModel<double[],T>clone in class Object