JavaScript is disabled on your browser.
Skip navigation links
Overview
Package
Class
Use
Tree
Deprecated
Index
Help
Prev Class
Next Class
Frames
No Frames
All Classes
Summary:
Nested |
Field |
Constr |
Method
Detail:
Field |
Constr |
Method
org.openimaj.math.model
Interface Model<I,D>
Type Parameters:
I
- type of independent data
D
- type of dependent data
All Known Subinterfaces:
EstimatableModel
<I,D>,
ImageClassificationModel
<T>
All Known Implementing Classes:
AffineTransformModel
,
AffineTransformModel3d
,
FundamentalModel
,
GaussianVectorNaiveBayesModel
,
HistogramPatchModel
,
HistogramPixelModel
,
HomographyModel
,
LeastSquaresLinearModel
,
LinearRegression
,
MBFPatchClassificationModel
,
MBFPixelClassificationModel
,
NullModel
,
OrthotopePixelModel
,
PatchClassificationModel
,
PixelClassificationModel
,
RigidTransformModel3d
,
SimplePerceptron
,
SingleGaussianPixelModel
,
UnivariateGaussianNaiveBayesModel
public interface
Model
<I,D>
The Model interface defines a mathematical model which links dependent and independent variables. The model can be used to create predictions of the dependent variables given the independent ones.
Author:
Jonathon Hare (jsh2@ecs.soton.ac.uk)
Method Summary
All Methods
Instance Methods
Abstract Methods
Modifier and Type
Method and Description
D
predict
(
I
data)
Uses the model to predict dependent data from an independent value.
Method Detail
predict
D
predict
(
I
data)
Uses the model to predict dependent data from an independent value.
Parameters:
data
- the data (independent variable)
Returns:
Dependent variable(s) predicted from the independent ones.
Skip navigation links
Overview
Package
Class
Use
Tree
Deprecated
Index
Help
Prev Class
Next Class
Frames
No Frames
All Classes
Summary:
Nested |
Field |
Constr |
Method
Detail:
Field |
Constr |
Method