Package | Description |
---|---|
org.openimaj.math.geometry.shape | |
org.openimaj.math.statistics.distribution | |
org.openimaj.math.statistics.distribution.metrics | |
org.openimaj.ml.gmm |
Modifier and Type | Method and Description |
---|---|
static Ellipse |
EllipseUtilities.ellipseFromGaussian(MultivariateGaussian gaussian,
float scale)
Construct an ellipse that encompasses the shape of a
CachingMultivariateGaussian . |
Modifier and Type | Class and Description |
---|---|
class |
AbstractMultivariateGaussian
Abstract base class for
MultivariateGaussian implementations |
class |
CachingMultivariateGaussian
A single multidimensional Gaussian.
|
class |
DiagonalMultivariateGaussian
Implementation of a
MultivariateGaussian with a diagonal covariance
matrix. |
class |
FullMultivariateGaussian
Implementation of a basic
MultivariateGaussian with a full covariance
matrix. |
class |
SphericalMultivariateGaussian
Implementation of a spherical
MultivariateGaussian (diagonal
covariance matrix with equal values). |
Modifier and Type | Field and Description |
---|---|
MultivariateGaussian[] |
MixtureOfGaussians.gaussians
The individual gaussians
|
Modifier and Type | Method and Description |
---|---|
static MultivariateGaussian |
CachingMultivariateGaussian.estimate(double[][] samples)
Estimate a multidimensional Gaussian from the data
|
static MultivariateGaussian |
CachingMultivariateGaussian.estimate(Jama.Matrix samples)
Estimate a multidimensional Gaussian from the data
|
MultivariateGaussian[] |
MixtureOfGaussians.getGaussians()
Get the gaussians that make up the mixture
|
Modifier and Type | Method and Description |
---|---|
static double[][] |
MixtureOfGaussians.logProbability(double[][] x,
MultivariateGaussian[] gaussians)
Compute the log probability of the given data points belonging to each of
the given gaussians
|
Constructor and Description |
---|
MixtureOfGaussians(MultivariateGaussian[] gaussians,
double[] weights)
Construct the mixture with the given gaussians and weights
|
Modifier and Type | Method and Description |
---|---|
double |
GaussianKLDivergence.compare(MultivariateGaussian o1,
MultivariateGaussian o2) |
Modifier and Type | Method and Description |
---|---|
protected abstract MultivariateGaussian[] |
GaussianMixtureModelEM.CovarianceType.createGaussians(int ngauss,
int ndims) |
Modifier and Type | Method and Description |
---|---|
protected abstract void |
GaussianMixtureModelEM.CovarianceType.setCovariances(MultivariateGaussian[] gaussians,
Jama.Matrix cv) |