public class HierarchicalIntHardAssigner extends Object implements HardAssigner<int[],float[],IntFloatPair>
HierarchicalIntHardAssigner
is a HardAssigner
for
HierarchicalIntKMeansResult
instances. The assigner
produces the index of the assigned leaf node as if the clusters were
actually flat.Modifier and Type | Class and Description |
---|---|
static class |
HierarchicalIntHardAssigner.ScoringScheme
The
HierarchicalIntHardAssigner.ScoringScheme determines how the distance
to a cluster is estimated from the hierarchy of k-means
generated clusters. |
Modifier and Type | Field and Description |
---|---|
protected HierarchicalIntPathAssigner |
path |
protected HierarchicalIntKMeansResult |
result |
protected HierarchicalIntHardAssigner.ScoringScheme |
scorer |
Constructor and Description |
---|
HierarchicalIntHardAssigner(HierarchicalIntKMeansResult result)
Construct with the given Hierarchical KMeans clusterer
and the SUM scoring scheme.
|
HierarchicalIntHardAssigner(HierarchicalIntKMeansResult result,
HierarchicalIntHardAssigner.ScoringScheme scorer)
Construct with the given hierarchical KMeans clusterer
and scoring scheme.
|
Modifier and Type | Method and Description |
---|---|
int |
assign(int[] data)
Assign a single point to a cluster.
|
int[] |
assign(int[][] data)
Assign data to a cluster.
|
IntFloatPair |
assignDistance(int[] data)
Assign a single point to a cluster.
|
void |
assignDistance(int[][] data,
int[] indices,
float[] distances)
Assign data to clusters.
|
int |
numDimensions()
Get the number of dimensions of the input vectors.
|
int |
size()
The number of centroids or unique ids that can be generated.
|
protected HierarchicalIntKMeansResult result
protected HierarchicalIntPathAssigner path
protected HierarchicalIntHardAssigner.ScoringScheme scorer
public HierarchicalIntHardAssigner(HierarchicalIntKMeansResult result, HierarchicalIntHardAssigner.ScoringScheme scorer)
result
- the hierarchical KMeans clustererscorer
- the scoring schemepublic HierarchicalIntHardAssigner(HierarchicalIntKMeansResult result)
result
- the hierarchical KMeans clustererpublic int[] assign(int[][] data)
HardAssigner
assign
in interface HardAssigner<int[],float[],IntFloatPair>
data
- the data.public int assign(int[] data)
HardAssigner
assign
in interface HardAssigner<int[],float[],IntFloatPair>
data
- datum to assign.public void assignDistance(int[][] data, int[] indices, float[] distances)
HardAssigner
assignDistance
in interface HardAssigner<int[],float[],IntFloatPair>
data
- the data.indices
- the cluster index for each data point.distances
- the distance to the closest cluster for each data point.public IntFloatPair assignDistance(int[] data)
HardAssigner
assignDistance
in interface HardAssigner<int[],float[],IntFloatPair>
data
- point to assign.public int size()
HardAssigner
size
in interface HardAssigner<int[],float[],IntFloatPair>
public int numDimensions()
Assigner
numDimensions
in interface Assigner<int[]>