public class ShortKNNAssigner extends Object implements SoftAssigner<short[],float[]>
SoftAssigner that picks a fixed number of nearest neighbours.
Weights returned are actually the distances to the centroids.| Modifier and Type | Field and Description |
|---|---|
protected ShortNearestNeighbours |
nn |
protected int |
numNeighbours |
| Constructor and Description |
|---|
ShortKNNAssigner(CentroidsProvider<short[]> provider,
boolean exact,
int numNeighbours)
Construct the assigner using the given cluster data.
|
ShortKNNAssigner(CentroidsProvider<short[]> provider,
ShortFVComparison comparison,
int numNeighbours)
Construct the assigner using the given cluster data and
distance function.
|
ShortKNNAssigner(short[][] data,
boolean exact,
int numNeighbours)
Construct the assigner using the given cluster data.
|
ShortKNNAssigner(short[][] data,
ShortFVComparison comparison,
int numNeighbours)
Construct the assigner using the given cluster data and
distance function.
|
| Modifier and Type | Method and Description |
|---|---|
int[] |
assign(short[] data)
Assign a single point to some clusters.
|
int[][] |
assign(short[][] data)
Assign data to clusters.
|
IndependentPair<int[],float[]> |
assignWeighted(short[] data)
Assign a single point to some clusters.
|
void |
assignWeighted(short[][] data,
int[][] assignments,
float[][] weights)
Assign data to clusters.
|
int |
numDimensions()
Get the number of dimensions of the input vectors.
|
int |
size()
The number of clusters.
|
protected ShortNearestNeighbours nn
protected int numNeighbours
public ShortKNNAssigner(CentroidsProvider<short[]> provider, boolean exact, int numNeighbours)
ShortNearestNeighboursExact or
ShortNearestNeighboursKDTree, depending on whether the exact
parameter is true or false. If the parameter is true, then the
resultant ShortNearestNeighboursExact will use Euclidean
distance.provider - the cluster data providerexact - if true, then use exact mode; false implies approximate mode.numNeighbours - the number of nearest neighbours to select.public ShortKNNAssigner(short[][] data, boolean exact, int numNeighbours)
ShortNearestNeighboursExact or
ShortNearestNeighboursKDTree, depending on whether the exact
parameter is true or false. If the parameter is true, then the
resultant ShortNearestNeighboursExact will use Euclidean
distance.data - the cluster dataexact - if true, then use exact mode; false implies approximate mode.numNeighbours - the number of nearest neighbours to select.public ShortKNNAssigner(CentroidsProvider<short[]> provider, ShortFVComparison comparison, int numNeighbours)
ShortNearestNeighboursExact.provider - the cluster data providercomparison - the distance functionnumNeighbours - the number of nearest neighbours to select.public ShortKNNAssigner(short[][] data, ShortFVComparison comparison, int numNeighbours)
ShortNearestNeighboursExact.data - the cluster datacomparison - the distance functionnumNeighbours - the number of nearest neighbours to select.public int[][] assign(short[][] data)
SoftAssignerassign in interface SoftAssigner<short[],float[]>data - the data.public int[] assign(short[] data)
SoftAssignerassign in interface SoftAssigner<short[],float[]>data - datum to assign.public void assignWeighted(short[][] data, int[][] assignments, float[][] weights)
SoftAssignerassignWeighted in interface SoftAssigner<short[],float[]>data - the data.assignments - the cluster indices for each data point.weights - the weights to the for each cluster for each data point.public IndependentPair<int[],float[]> assignWeighted(short[] data)
SoftAssignerassignWeighted in interface SoftAssigner<short[],float[]>data - point to assign.public int numDimensions()
AssignernumDimensions in interface Assigner<short[]>public int size()
SoftAssignersize in interface SoftAssigner<short[],float[]>