@Reference(type=Inproceedings, author={"David. Nist\'er","Henrik. Stew\'enius"}, title="Scalable Recognition with a Vocabulary Tree", year="2006", booktitle="CVPR", pages={"2161","","2168"}, customData={"Date-Added","2010-11-12 09:33:18 +0000","Date-Modified","2010-11-22 15:11:22 +0000"}) public class HierarchicalByteKMeans extends Object implements SpatialClusterer<HierarchicalByteKMeansResult,byte[]>
HierarchicalByteKMeans) is a simple
hierarchical version of ByteKMeans. The algorithm recursively applies| Constructor and Description |
|---|
HierarchicalByteKMeans(int M,
int K,
int depth)
Construct a new
HierarchicalByteKMeans with the given parameters. |
HierarchicalByteKMeans(KMeansConfiguration<ByteNearestNeighbours,byte[]> config,
int M,
int K,
int depth)
Construct a new
HierarchicalByteKMeans with the given parameters. |
| Modifier and Type | Method and Description |
|---|---|
HierarchicalByteKMeansResult |
cluster(byte[][] data)
Perform clustering on the given data.
|
HierarchicalByteKMeansResult |
cluster(DataSource<byte[]> data)
Perform clustering with data from a data source.
|
int[][] |
performClustering(byte[][] data) |
public HierarchicalByteKMeans(KMeansConfiguration<ByteNearestNeighbours,byte[]> config, int M, int K, int depth)
HierarchicalByteKMeans with the given parameters.config - configuration for the underlying kmeans clustering.M - Data dimensionality.K - Number of clusters per node.depth - Tree depth.public HierarchicalByteKMeans(int M, int K, int depth)
HierarchicalByteKMeans with the given parameters.
Uses the default parameters of the KMeansConfiguration.M - Data dimensionality.K - Number of clusters per node.depth - Tree depth.public HierarchicalByteKMeansResult cluster(byte[][] data)
SpatialClusterercluster in interface SpatialClusterer<HierarchicalByteKMeansResult,byte[]>data - the data.public int[][] performClustering(byte[][] data)
performClustering in interface Clusterer<byte[][]>public HierarchicalByteKMeansResult cluster(DataSource<byte[]> data)
SpatialClustererDataSource
could potentially be backed by disk rather in memory.cluster in interface SpatialClusterer<HierarchicalByteKMeansResult,byte[]>data - the data.