public class LinearRegressionProcessor extends Object implements TimeSeriesProcessor<double[],Double,DoubleTimeSeries>
LinearRegression model, a time series is used as input to
calculate the coefficients of a linear regression such that value = b * time
+ c
This is the simplest kind of model that can be applied to a time series| Constructor and Description |
|---|
LinearRegressionProcessor()
Calculate the regression from the same time series inputed
|
LinearRegressionProcessor(LinearRegression reg)
Use reg as the linear regression to predict.
|
| Modifier and Type | Method and Description |
|---|---|
LinearRegression |
getRegression() |
void |
holdreg(boolean regdefined) |
void |
process(DoubleTimeSeries series) |
public LinearRegressionProcessor()
public LinearRegressionProcessor(LinearRegression reg)
process(DoubleTimeSeries) function simply calls
LinearRegression.predict(Matrix) with the times in the series as
inputreg - public void process(DoubleTimeSeries series)
process in interface TimeSeriesProcessor<double[],Double,DoubleTimeSeries>series - alter this time series in placepublic void holdreg(boolean regdefined)
regdefined - if true, process holds its last LinearRegressionpublic LinearRegression getRegression()
LinearRegressionProcessor's underlying
LinearRegression model