Package | Description |
---|---|
ch.akuhn.matrix.eigenvalues | |
org.openimaj.ml.clustering.spectral |
Modifier and Type | Class and Description |
---|---|
class |
AllEigenvalues
Finds all eigenvalues of a matrix.
|
class |
FewEigenvalues
Finds a few eigenvalues of a matrix.
|
Modifier and Type | Method and Description |
---|---|
Eigenvalues |
Eigenvalues.largest(int nev)
Configure to compute the largest
nev values/vectors. |
static Eigenvalues |
Eigenvalues.of(Matrix A)
Get an object that can compute the eigendecomposition of the given
matrix.
|
Eigenvalues |
FewEigenvalues.run()
Runs the eigenvalue decomposition, using an implicitly restarted Arnoldi
process (IRAP).
|
Eigenvalues |
Eigenvalues.run()
Run the decomposition algorithm.
|
Modifier and Type | Method and Description |
---|---|
protected Eigenvalues |
DoubleSpectralClustering.laplacianEigenVectors(SparseMatrix laplacian) |
abstract Eigenvalues |
EigenChooser.prepare(SparseMatrix laplacian)
Make a coarse decision of the number of eigen vectors to extract in the first place
with the knowledge of the eigen values that will likely be important
|
Eigenvalues |
HardCodedEigenChooser.prepare(SparseMatrix laplacian) |
protected Eigenvalues |
CachedDoubleSpectralClustering.spectralCluster(SparseMatrix data) |
protected Eigenvalues |
DoubleSpectralClustering.spectralCluster(SparseMatrix data) |
Modifier and Type | Method and Description |
---|---|
protected IndependentPair<double[],double[][]> |
PreparedSpectralClustering.bestCols(Eigenvalues eig) |
SpectralIndexedClusters |
PreparedSpectralClustering.cluster(Eigenvalues eig) |
Iterator<DoubleObjectPair<Vector>> |
GraphLaplacian.eigenIterator(Eigenvalues evd) |
Iterator<DoubleObjectPair<Vector>> |
GraphLaplacian.Normalised.eigenIterator(Eigenvalues evd) |
Iterator<DoubleObjectPair<Vector>> |
GraphLaplacian.Warped.eigenIterator(Eigenvalues evd) |
int[][] |
PreparedSpectralClustering.performClustering(Eigenvalues data) |
Constructor and Description |
---|
FBEigenIterator(Eigenvalues evd) |