public class ApproximateDenseSIFT extends DenseSIFT
Implementation directly based on the VLFeat extractor.
Implementation Notes. The analyser is not thread-safe, however, it is safe to reuse the analyser. In multi-threaded environments, a separate instance must be made for each thread. Internally, this implementation allocates memory for the gradient images, and if possible re-uses these between calls. Re-use requires that the input image is the same size between calls to the analyser.
binHeight, binWidth, data, descriptors, energies, gaussianWindowSize, numBinsX, numBinsY, numOriBins, stepX, stepY, valueThreshold
Constructor and Description |
---|
ApproximateDenseSIFT()
Construct with the default configuration: standard SIFT geometry (4x4x8),
5px x 5px spatial bins, 5px step size, gaussian window size of 2 and
value threshold of 0.2.
|
ApproximateDenseSIFT(int step,
int binSize)
Construct with the given step size (for both x and y) and binSize.
|
ApproximateDenseSIFT(int stepX,
int stepY,
int binWidth,
int binHeight,
int numBinsX,
int numBinsY,
int numOriBins)
Construct with the given configuration.
|
ApproximateDenseSIFT(int stepX,
int stepY,
int binWidth,
int binHeight,
int numBinsX,
int numBinsY,
int numOriBins,
float gaussianWindowSize)
Construct with the given configuration.
|
ApproximateDenseSIFT(int stepX,
int stepY,
int binWidth,
int binHeight,
int numBinsX,
int numBinsY,
int numOriBins,
float gaussianWindowSize,
float valueThreshold)
Construct with the given configuration.
|
Modifier and Type | Method and Description |
---|---|
ApproximateDenseSIFT |
clone() |
protected void |
extractFeatures()
Extract the DSIFT features
|
analyseImage, getBinHeight, getBinWidth, getByteKeypoints, getByteKeypoints, getDescriptors, getFloatKeypoints, getFloatKeypoints, getNumBinsX, getNumBinsY, getNumOriBins, setBinHeight, setBinWidth
analyseImage
public ApproximateDenseSIFT()
public ApproximateDenseSIFT(int step, int binSize)
step
- the step sizebinSize
- the spatial bin sizepublic ApproximateDenseSIFT(int stepX, int stepY, int binWidth, int binHeight, int numBinsX, int numBinsY, int numOriBins)
stepX
- step size in x directionstepY
- step size in y directionbinWidth
- width of spatial binsbinHeight
- height of spatial binsnumBinsX
- number of bins in x direction for each descriptornumBinsY
- number of bins in y direction for each descriptornumOriBins
- number of orientation bins for each descriptorpublic ApproximateDenseSIFT(int stepX, int stepY, int binWidth, int binHeight, int numBinsX, int numBinsY, int numOriBins, float gaussianWindowSize)
stepX
- step size in x directionstepY
- step size in y directionbinWidth
- width of spatial binsbinHeight
- height of spatial binsnumBinsX
- number of bins in x direction for each descriptornumBinsY
- number of bins in y direction for each descriptornumOriBins
- number of orientation bins for each descriptorgaussianWindowSize
- the size of the gaussian weighting windowpublic ApproximateDenseSIFT(int stepX, int stepY, int binWidth, int binHeight, int numBinsX, int numBinsY, int numOriBins, float gaussianWindowSize, float valueThreshold)
stepX
- step size in x directionstepY
- step size in y directionbinWidth
- width of spatial binsbinHeight
- height of spatial binsnumBinsX
- number of bins in x direction for each descriptornumBinsY
- number of bins in y direction for each descriptornumOriBins
- number of orientation bins for each descriptorgaussianWindowSize
- the size of the gaussian weighting windowvalueThreshold
- the threshold for clipping featuresprotected void extractFeatures()
DenseSIFT
extractFeatures
in class DenseSIFT
public ApproximateDenseSIFT clone()