Modifier and Type | Interface and Description |
---|---|
interface |
ImageClassificationModel<T extends Image<?,T>>
An ImageClassificationModel is a
EstimatableModel constructed between
an generic image and a probability map in the form of an FImage. |
Modifier and Type | Class and Description |
---|---|
class |
HistogramPatchModel
A
MBFPatchClassificationModel that performs classification
based on the joint (colour) histogram of the patch by comparing the
patch histogram to a model histogram with a given comparison measure. |
class |
MBFPatchClassificationModel
A base implementation of a
PatchClassificationModel for
MBFImage s. |
class |
PatchClassificationModel<Q,T extends Image<Q,T>>
An
ImageClassificationModel based on the idea of determining the
probability of a class of a pixel given the local patch of pixels surrounding
the pixel in question. |
Modifier and Type | Class and Description |
---|---|
class |
HistogramPixelModel
An
MBFPixelClassificationModel that classifies an individual pixel by
comparing it to a joint (colour) histogram. |
class |
MBFPixelClassificationModel
An abstract PixelClassificationModel for
MBFImage s. |
class |
OrthotopePixelModel
Model of an orthotope/hyperrectangle/box in space.
|
class |
PixelClassificationModel<Q,T extends Image<Q,T>>
Simple model for classifying pixels.
|
class |
SingleGaussianPixelModel
An
MBFPixelClassificationModel that classifies an individual pixel by
comparing it to a CachingMultivariateGaussian . |
Modifier and Type | Class and Description |
---|---|
class |
AffineTransformModel
Concrete implementation of a model of an Affine transform.
|
class |
AffineTransformModel3d
Concrete implementation of a model of an Affine transform.
|
class |
FundamentalModel
Implementation of a Fundamental matrix model that estimates the epipolar
geometry.
|
class |
HomographyModel
Implementation of a Homogeneous Homography model - a transform that models
the relationship between planes under projective constraints (8 D.o.F)
|
class |
NullModel<T>
A
NullModel models a one-to-one mapping of data. |
class |
RigidTransformModel3d
Concrete implementation of a model of a 3D rigid transform with only rotation
and translation allowed.
|
Modifier and Type | Class and Description |
---|---|
class |
GaussianVectorNaiveBayesModel<T>
An implementation of a
EstimatableModel that uses a
VectorNaiveBayesCategorizer to associate vectors (actually double[])
with a category based on the naive bayes model. |
class |
LeastSquaresLinearModel
Model of mapping between pairs of integers learned from a least-squares
regression.
|
class |
UnivariateGaussianNaiveBayesModel<T>
An implementation of a
EstimatableModel that uses a
VectorNaiveBayesCategorizer to associate a univariate (a
Double ) with a category. |
Modifier and Type | Method and Description |
---|---|
EstimatableModel<I,D> |
EstimatableModel.clone()
Clone the model
|
Modifier and Type | Class and Description |
---|---|
class |
LMedS<I,D,M extends EstimatableModel<I,D>>
Least Median of Squares robust model fitting
|
class |
RANSAC<I,D,M extends EstimatableModel<I,D>>
The RANSAC Algorithm (RANdom SAmple Consensus)
|
class |
SimpleModelFitting<I,D,M extends EstimatableModel<I,D>>
Example robust fitting, that simply wraps the models estimate method.
|
Modifier and Type | Field and Description |
---|---|
protected M |
LMedS.bestModel |
protected M |
RANSAC.model |
protected M |
LMedS.model |
Modifier and Type | Method and Description |
---|---|
boolean |
RANSAC.StoppingCondition.init(List<?> data,
EstimatableModel<?,?> model)
Initialise the stopping condition if necessary.
|
boolean |
RANSAC.NumberInliersStoppingCondition.init(List<?> data,
EstimatableModel<?,?> model) |
boolean |
RANSAC.PercentageInliersStoppingCondition.init(List<?> data,
EstimatableModel<?,?> model) |
boolean |
RANSAC.ProbabilisticMinInliersStoppingCondition.init(List<?> data,
EstimatableModel<?,?> model) |
boolean |
RANSAC.BestFitStoppingCondition.init(List<?> data,
EstimatableModel<?,?> model) |
Constructor and Description |
---|
ModelAnnotator(FeatureExtractor<FEATURE,OBJECT> extractor,
EstimatableModel<FEATURE,ANNOTATION> model,
Set<ANNOTATION> annotations)
Construct with the given parameters.
|
Modifier and Type | Class and Description |
---|---|
class |
SimplePerceptron |
Modifier and Type | Class and Description |
---|---|
class |
LinearRegression
Given a set of independant variables a linear regressions finds the optimal
vector B such that: (Y - Xb)^2 = 0 (Y - Xb)^{T}(Y-Xb) = 0
calculated by assuming a convex shape of (Y - Xb) with varying values of b
(reasonable as the function is linear) and then calculating the point at
which the first derivative of this function is 0.
|