Modifier and Type | Method and Description |
---|---|
static SparseMatrix |
SparseMatrix.random(int n,
int m,
double density)
Create a random matrix
|
static SparseMatrix |
SparseMatrix.readFrom(Scanner scan)
Read matrix from
Scanner |
static SparseMatrix |
Matrix.sparse(int n,
int m)
Create a sparse matrix
|
Constructor and Description |
---|
RangedDBSCANClusterEvaluator(UniformDoubleRangeIterable r,
SparseMatrixDBSCAN gen,
SparseMatrix data,
Function<B,Integer> indexFunc,
Map<A,? extends List<B>> dataset,
ClusterAnalyser<T> analyser) |
RangedDBSCANClusterEvaluator(UniformDoubleRangeIterable r,
SparseMatrixDBSCAN gen,
SparseMatrix data,
int[][] clusters,
ClusterAnalyser<T> analyser) |
RangedDBSCANClusterEvaluator(UniformDoubleRangeIterable r,
SparseMatrixDBSCAN gen,
SparseMatrix data,
Map<A,? extends List<B>> dataset,
ClusterAnalyser<T> analyser) |
Constructor and Description |
---|
RangedDBSCANClusterEvaluator(UniformDoubleRangeIterable r,
SparseMatrixDBSCAN gen,
Map<A,? extends List<B>> dataset,
Function<List<B>,SparseMatrix> transform,
ClusterAnalyser<T> analyser) |
Modifier and Type | Method and Description |
---|---|
static SparseMatrix |
MatlibMatrixUtils.maxInplace(SparseMatrix A,
SparseMatrix B) |
static SparseMatrix |
MatlibMatrixUtils.minInplace(SparseMatrix A,
SparseMatrix B) |
static SparseMatrix |
MatlibMatrixUtils.plusInplace(SparseMatrix A,
Matrix B)
Add two matrices, storing the results in the first:
A = A + B |
static SparseMatrix |
MatlibMatrixUtils.threshold(SparseMatrix data,
double thresh)
Set values below the given threshold to zero in the output matrix.
|
static SparseMatrix |
MatlibMatrixUtils.times(DiagonalMatrix D,
SparseMatrix A)
Left multiply two matrices:
R = D . |
static SparseMatrix |
MatlibMatrixUtils.times(SparseMatrix A,
DiagonalMatrix D)
Right multiply two matrices:
R = A . |
static SparseMatrix |
MatlibMatrixUtils.timesInplace(SparseMatrix A,
SparseMatrix B) |
Modifier and Type | Method and Description |
---|---|
static SparseMatrix |
MatlibMatrixUtils.maxInplace(SparseMatrix A,
SparseMatrix B) |
static SparseMatrix |
MatlibMatrixUtils.minInplace(SparseMatrix A,
SparseMatrix B) |
static SparseMatrix |
MatlibMatrixUtils.plusInplace(SparseMatrix A,
Matrix B)
Add two matrices, storing the results in the first:
A = A + B |
static double |
MatrixUtils.sparsity(SparseMatrix matrix)
Compute the sparsity (i.e.
|
static SparseMatrix |
MatlibMatrixUtils.threshold(SparseMatrix data,
double thresh)
Set values below the given threshold to zero in the output matrix.
|
static SparseMatrix |
MatlibMatrixUtils.times(DiagonalMatrix D,
SparseMatrix A)
Left multiply two matrices:
R = D . |
static SparseMatrix |
MatlibMatrixUtils.times(SparseMatrix A,
DiagonalMatrix D)
Right multiply two matrices:
R = A . |
static SparseMatrix |
MatlibMatrixUtils.timesInplace(SparseMatrix A,
SparseMatrix B) |
Modifier and Type | Method and Description |
---|---|
CLUSTERS |
DistanceClusterer.clusterDistance(SparseMatrix dist) |
CLUSTERS |
SimilarityClusterer.clusterSimilarity(SparseMatrix sim) |
Modifier and Type | Method and Description |
---|---|
DoubleDBSCANClusters |
DistanceDBSCAN.cluster(SparseMatrix data) |
DoubleDBSCANClusters |
SimilarityDBSCAN.cluster(SparseMatrix data) |
DoubleDBSCANClusters |
DistanceDBSCAN.clusterDistance(SparseMatrix data) |
DoubleDBSCANClusters |
SimilarityDBSCAN.clusterSimilarity(SparseMatrix data) |
int[][] |
SparseMatrixDBSCAN.performClustering(SparseMatrix data) |
Modifier and Type | Method and Description |
---|---|
IndexClusters |
IncrementalSparseClusterer.cluster(SparseMatrix data) |
int[][] |
IncrementalSparseClusterer.performClustering(SparseMatrix data) |
Constructor and Description |
---|
OPTIMISED(DiagonalMatrix D,
SparseMatrix W) |
Modifier and Type | Method and Description |
---|---|
IndexClusters |
RandomClusterer.cluster(SparseMatrix data) |
int[][] |
RandomClusterer.performClustering(SparseMatrix data) |
Modifier and Type | Method and Description |
---|---|
SparseMatrix |
DoubleFVSimilarityFunction.apply(List<T> in) |
SparseMatrix |
GraphLaplacian.laplacian(SparseMatrix adj) |
protected SparseMatrix |
DoubleSpectralClustering.laplacian(SparseMatrix data) |
abstract SparseMatrix |
GraphLaplacian.laplacian(SparseMatrix adj,
DiagonalMatrix degree) |
SparseMatrix |
GraphLaplacian.Unnormalised.laplacian(SparseMatrix adj,
DiagonalMatrix degree) |
SparseMatrix |
GraphLaplacian.Normalised.laplacian(SparseMatrix adj,
DiagonalMatrix degree) |
SparseMatrix |
GraphLaplacian.Warped.laplacian(SparseMatrix adj,
DiagonalMatrix degree) |
protected SparseMatrix |
RBFSimilarityDoubleClustererWrapper.similarity() |
protected SparseMatrix |
NormalisedSimilarityDoubleClustererWrapper.similarity() |
protected abstract SparseMatrix |
DoubleFVSimilarityFunction.similarity() |
Modifier and Type | Method and Description |
---|---|
SpectralIndexedClusters |
DoubleSpectralClustering.cluster(SparseMatrix data) |
SpectralIndexedClusters |
DoubleSpectralClustering.clusterSimilarity(SparseMatrix sim) |
SparseMatrix |
GraphLaplacian.laplacian(SparseMatrix adj) |
protected SparseMatrix |
DoubleSpectralClustering.laplacian(SparseMatrix data) |
abstract SparseMatrix |
GraphLaplacian.laplacian(SparseMatrix adj,
DiagonalMatrix degree) |
SparseMatrix |
GraphLaplacian.Unnormalised.laplacian(SparseMatrix adj,
DiagonalMatrix degree) |
SparseMatrix |
GraphLaplacian.Normalised.laplacian(SparseMatrix adj,
DiagonalMatrix degree) |
SparseMatrix |
GraphLaplacian.Warped.laplacian(SparseMatrix adj,
DiagonalMatrix degree) |
protected Eigenvalues |
DoubleSpectralClustering.laplacianEigenVectors(SparseMatrix laplacian) |
int[][] |
DoubleSpectralClustering.performClustering(SparseMatrix data) |
FewEigenvalues |
AbsoluteValueEigenChooser.prepare(SparseMatrix laplacian) |
FewEigenvalues |
ChangeDetectingEigenChooser.prepare(SparseMatrix laplacian) |
abstract Eigenvalues |
EigenChooser.prepare(SparseMatrix laplacian)
Make a coarse decision of the number of eigen vectors to extract in the first place
with the knowledge of the eigen values that will likely be important
|
Eigenvalues |
HardCodedEigenChooser.prepare(SparseMatrix laplacian) |
protected Eigenvalues |
CachedDoubleSpectralClustering.spectralCluster(SparseMatrix data) |
protected Eigenvalues |
DoubleSpectralClustering.spectralCluster(SparseMatrix data) |
Modifier and Type | Method and Description |
---|---|
IndexClusters |
DoubleMultiviewSpectralClustering.cluster(List<SparseMatrix> data) |
int[][] |
DoubleMultiviewSpectralClustering.performClustering(List<SparseMatrix> data) |
Modifier and Type | Method and Description |
---|---|
static SparseMatrix |
MatlibBilinearSparseOnlineLearner.expandY(Matrix Y)
Given a flat value matrix, makes a diagonal sparse matrix containing the values as the diagonal
|