| Package | Description | 
|---|---|
| org.openimaj.image.feature.local.aggregate | Implementations of techniques that aggregate the local descriptors 
 of an image into a single (typically fixed length) vector 
 representation. | 
| org.openimaj.ml.clustering | |
| org.openimaj.ml.clustering.assignment.hard | |
| org.openimaj.ml.clustering.assignment.soft | |
| org.openimaj.ml.clustering.dbscan | |
| org.openimaj.ml.clustering.kdtree | |
| org.openimaj.ml.clustering.kmeans | K-Means in OpenIMAJ is designed to be both extremely fast and flexible. | 
| org.openimaj.ml.clustering.rac | |
| org.openimaj.ml.clustering.rforest | 
| Modifier and Type | Method and Description | 
|---|---|
| static <L extends Location,T> | BagOfVisualWords. computeQuantisedFeatures(HardAssigner<T,?,?> assigner,
                        List<? extends LocalFeature<L,? extends ArrayFeatureVector<T>>> features)Utility method to construct a list of quantised local features (local
 features with visual word assignments) from a list of features and a
  HardAssigner. | 
| Constructor and Description | 
|---|
| BagOfVisualWords(HardAssigner<T,?,?> assigner)Construct with the given assigner. | 
| VLAD(HardAssigner<T,?,?> assigner,
    CentroidsProvider<T> centroids,
    boolean normalise)Construct with the given assigner and the centroids associated with the
 assigner. | 
| VLAD(HardAssigner<T,?,?> assigner,
    T[] centroids,
    boolean normalise)Construct with the given assigner and the centroids associated with the
 assigner. | 
| Modifier and Type | Method and Description | 
|---|---|
| HardAssigner<double[],double[],IntDoublePair> | DoubleCentroidsResult. defaultHardAssigner() | 
| HardAssigner<T,float[],IntFloatPair> | FeatureVectorCentroidsResult. defaultHardAssigner() | 
| HardAssigner<short[],float[],IntFloatPair> | ShortCentroidsResult. defaultHardAssigner() | 
| HardAssigner<long[],double[],IntDoublePair> | LongCentroidsResult. defaultHardAssigner() | 
| HardAssigner<float[],float[],IntFloatPair> | FloatCentroidsResult. defaultHardAssigner() | 
| HardAssigner<int[],float[],IntFloatPair> | IntCentroidsResult. defaultHardAssigner() | 
| HardAssigner<byte[],float[],IntFloatPair> | ByteCentroidsResult. defaultHardAssigner() | 
| HardAssigner<DATATYPE,?,?> | SpatialClusters. defaultHardAssigner()Get the default hard assigner for this clusterer. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ConstrainedFloatAssigner<DATATYPE>An assigner that wraps another hard assigner and only produces valid
 assignments if the closest cluster is within (or outside) of a given
 threshold distance. | 
| class  | ExactByteAssignerA  HardAssignerthat assigns points to the closest
 cluster based on the distance to the centroid. | 
| class  | ExactDoubleAssignerA  HardAssignerthat assigns points to the closest
 cluster based on the distance to the centroid. | 
| class  | ExactFeatureVectorAssigner<T extends FeatureVector>A  HardAssignerthat assigns points to the closest cluster based on
 the distance to the centroid. | 
| class  | ExactFloatAssignerA  HardAssignerthat assigns points to the closest
 cluster based on the distance to the centroid. | 
| class  | ExactIntAssignerA  HardAssignerthat assigns points to the closest
 cluster based on the distance to the centroid. | 
| class  | ExactLongAssignerA  HardAssignerthat assigns points to the closest
 cluster based on the distance to the centroid. | 
| class  | ExactShortAssignerA  HardAssignerthat assigns points to the closest
 cluster based on the distance to the centroid. | 
| class  | HierarchicalByteHardAssigner | 
| class  | HierarchicalDoubleHardAssigner | 
| class  | HierarchicalFloatHardAssigner | 
| class  | HierarchicalIntHardAssigner | 
| class  | HierarchicalLongHardAssigner | 
| class  | HierarchicalShortHardAssigner | 
| class  | KDTreeByteEuclideanAssignerA  HardAssignerthat uses aByteNearestNeighboursKDTreeto
 generate approximately correct cluster assignments. | 
| class  | KDTreeDoubleEuclideanAssignerA  HardAssignerthat uses aDoubleNearestNeighboursKDTreeto
 generate approximately correct cluster assignments. | 
| class  | KDTreeFloatEuclideanAssignerA  HardAssignerthat uses aFloatNearestNeighboursKDTreeto
 generate approximately correct cluster assignments. | 
| class  | KDTreeIntEuclideanAssignerA  HardAssignerthat uses aIntNearestNeighboursKDTreeto
 generate approximately correct cluster assignments. | 
| class  | KDTreeLongEuclideanAssignerA  HardAssignerthat uses aLongNearestNeighboursKDTreeto
 generate approximately correct cluster assignments. | 
| class  | KDTreeShortEuclideanAssignerA  HardAssignerthat uses aShortNearestNeighboursKDTreeto
 generate approximately correct cluster assignments. | 
| Constructor and Description | 
|---|
| ConstrainedFloatAssigner(HardAssigner<DATATYPE,float[],IntFloatPair> internalAssigner,
                        float threshold)Construct the ConstrainedFloatAssigner with the given assigner and
 threshold. | 
| ConstrainedFloatAssigner(HardAssigner<DATATYPE,float[],IntFloatPair> internalAssigner,
                        float threshold,
                        boolean greater)Construct the ConstrainedFloatAssigner with the given assigner and
 threshold. | 
| Modifier and Type | Field and Description | 
|---|---|
| protected Map<CentroidsProvider<int[]>,HardAssigner<int[],float[],IntFloatPair>> | HierarchicalIntPathAssigner. assigners | 
| protected Map<CentroidsProvider<float[]>,HardAssigner<float[],float[],IntFloatPair>> | HierarchicalFloatPathAssigner. assigners | 
| protected Map<CentroidsProvider<byte[]>,HardAssigner<byte[],float[],IntFloatPair>> | HierarchicalBytePathAssigner. assigners | 
| protected Map<CentroidsProvider<long[]>,HardAssigner<long[],double[],IntDoublePair>> | HierarchicalLongPathAssigner. assigners | 
| protected Map<CentroidsProvider<double[]>,HardAssigner<double[],double[],IntDoublePair>> | HierarchicalDoublePathAssigner. assigners | 
| protected Map<CentroidsProvider<short[]>,HardAssigner<short[],float[],IntFloatPair>> | HierarchicalShortPathAssigner. assigners | 
| Modifier and Type | Method and Description | 
|---|---|
| HardAssigner<double[],?,?> | DoubleDBSCANClusters. defaultHardAssigner() | 
| Modifier and Type | Method and Description | 
|---|---|
| HardAssigner<double[],?,?> | KDTreeClusters. defaultHardAssigner() | 
| Modifier and Type | Method and Description | 
|---|---|
| HardAssigner<float[],float[],IntFloatPair> | FloatKMeans.Result. defaultHardAssigner() | 
| HardAssigner<short[],float[],IntFloatPair> | ShortKMeans.Result. defaultHardAssigner() | 
| HardAssigner<int[],float[],IntFloatPair> | IntKMeans.Result. defaultHardAssigner() | 
| HardAssigner<byte[],float[],IntFloatPair> | ByteKMeans.Result. defaultHardAssigner() | 
| HardAssigner<double[],double[],IntDoublePair> | SphericalKMeansResult. defaultHardAssigner() | 
| HardAssigner<long[],double[],IntDoublePair> | LongKMeans.Result. defaultHardAssigner() | 
| HardAssigner<T,float[],IntFloatPair> | FeatureVectorKMeans.Result. defaultHardAssigner() | 
| HardAssigner<double[],double[],IntDoublePair> | DoubleKMeans.Result. defaultHardAssigner() | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ClusterLimitedIntRACSimilar to  IntRACbut explicitly specify the limit the number of
 clusters. | 
| class  | IntRACAn implementation of the RAC algorithm proposed by Ramanan and Niranjan. | 
| Modifier and Type | Method and Description | 
|---|---|
| HardAssigner<int[],?,?> | IntRAC. defaultHardAssigner() | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | IntRandomForestAn implementation of the RandomForest clustering algorithm proposed by Jurie et al. | 
| Modifier and Type | Method and Description | 
|---|---|
| HardAssigner<int[],?,?> | IntRandomForest. defaultHardAssigner() |