| Modifier and Type | Class and Description | 
|---|---|
class  | 
MusicSpeechDataset
OpenIMAJ Dataset for the MusicSpeech Database 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MapBackedDataset<KEY,DATASET extends Dataset<INSTANCE>,INSTANCE>
 | 
class  | 
ReadableGroupDataset<KEY,DATASET extends Dataset<INSTANCE>,INSTANCE,SOURCE>
Base class for  
GroupedDatasets in which each instance is read with an
 InputStreamObjectReader. | 
class  | 
VFSGroupDataset<INSTANCE>
A  
GroupedDataset of VFSListDatasets backed by directories of
 items (either locally or remotely), or items stored in a hierarchical
 structure within a compressed archive. | 
| Modifier and Type | Method and Description | 
|---|---|
GroupedDataset<KEY,ListDataset<OBJECT>,OBJECT> | 
GroupedListCache.getDataset()  | 
GroupedDataset<KEY,ListDataset<OBJECT>,OBJECT> | 
InMemoryGroupedListCache.getDataset()  | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ClusterEvalDataset
Reads datasets of items and cluster labels from the clustereval tool:
 http://chris.de-vries.id.au/2013/06/clustereval-10-release.html
 
 The general format of clustereval is:
 item cluster_label* 
 | 
| Modifier and Type | Method and Description | 
|---|---|
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> | 
NamedGroupSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset)  | 
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> | 
GroupSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset)  | 
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> | 
GroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset)  | 
static <KEY,INSTANCE> | 
NamedGroupSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
      Collection<KEY> keys)
Sample a dataset by selecting only the given group keys. 
 | 
static <KEY,INSTANCE> | 
GroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
      double percentage)
Sample a dataset with the given percentage of instances to select. 
 | 
static <KEY,INSTANCE> | 
GroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
      double percentage,
      boolean withReplacement)
Sample a dataset with the given percentage of instances to select, using
 with with-replacement or without-replacement sampling. 
 | 
static <KEY,INSTANCE> | 
GroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
      int number)
Sample a dataset with the given number of instances to select. 
 | 
static <KEY,INSTANCE> | 
GroupSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
      int numGroups,
      boolean random)
Sample a dataset with the given number of groups to select. 
 | 
static <KEY,INSTANCE> | 
GroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
      int number,
      boolean withReplacement)
Sample a dataset with the given number of instances to select, using with
 with-replacement or without-replacement sampling. 
 | 
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> | 
StratifiedGroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> dataset)  | 
| Modifier and Type | Method and Description | 
|---|---|
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> | 
NamedGroupSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset)  | 
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> | 
GroupSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset)  | 
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> | 
GroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset)  | 
static <KEY,INSTANCE> | 
NamedGroupSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
      Collection<KEY> keys)
Sample a dataset by selecting only the given group keys. 
 | 
static <KEY,INSTANCE> | 
GroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
      double percentage)
Sample a dataset with the given percentage of instances to select. 
 | 
static <KEY,INSTANCE> | 
GroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
      double percentage,
      boolean withReplacement)
Sample a dataset with the given percentage of instances to select, using
 with with-replacement or without-replacement sampling. 
 | 
static <KEY,INSTANCE> | 
GroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
      int number)
Sample a dataset with the given number of instances to select. 
 | 
static <KEY,INSTANCE> | 
GroupSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
      int numGroups,
      boolean random)
Sample a dataset with the given number of groups to select. 
 | 
static <KEY,INSTANCE> | 
GroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
      int number,
      boolean withReplacement)
Sample a dataset with the given number of instances to select, using with
 with-replacement or without-replacement sampling. 
 | 
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> | 
StratifiedGroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> dataset)  | 
| Modifier and Type | Method and Description | 
|---|---|
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> | 
GroupedRandomSplitter.getTestDataset()  | 
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> | 
GroupedRandomSplitter.getTrainingDataset()  | 
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> | 
GroupedRandomSplitter.getValidationDataset()  | 
| Modifier and Type | Method and Description | 
|---|---|
static <KEY,INSTANCE> | 
GroupedRandomSplitter.createCrossValidationData(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
                         int numTraining,
                         int numValidation,
                         int numIterations)
Create a  
CrossValidationIterable from the dataset. | 
| Modifier and Type | Method and Description | 
|---|---|
static <KEY,INSTANCE> | 
GroupedRandomSplitter.createCrossValidationData(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
                         int numTraining,
                         int numValidation,
                         int numIterations)
Create a  
CrossValidationIterable from the dataset. | 
| Constructor and Description | 
|---|
GroupedRandomSplitter(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
                     int numTraining,
                     int numValidation,
                     int numTesting)
Construct the dataset splitter with the given target instance sizes for
 each group of the training, validation and testing data. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <ANN,INSTANCE> | 
DatasetAdaptors.flattenListGroupedDataset(GroupedDataset<ANN,? extends ListDataset<List<INSTANCE>>,? extends List<INSTANCE>> dataset)
if you have a grouped dataset where the groups contains lists of feature
 objects (i.e. 
 | 
static <ANN,DATASET extends Dataset<INSTANCE>,INSTANCE> | 
DatasetAdaptors.getGroupedDatasetSubset(GroupedDataset<ANN,DATASET,INSTANCE> data,
                       ANN... groups)
Takes a grouped dataset and returns a new dataset that contains only
 those groups specified. 
 | 
static <ANN,DATASET extends ListDataset<INSTANCE>,INSTANCE> | 
DatasetAdaptors.getRegroupedDataset(GroupedDataset<ANN,DATASET,INSTANCE> data,
                   Map<ANN,ANN[]> regroupCriteria)
Takes a grouped dataset and returns a new dataset with the groups
 re-shuffled as specified in the regrouping criteria. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <ANN,INSTANCE> | 
DatasetAdaptors.flattenListGroupedDataset(GroupedDataset<ANN,? extends ListDataset<List<INSTANCE>>,? extends List<INSTANCE>> dataset)
if you have a grouped dataset where the groups contains lists of feature
 objects (i.e. 
 | 
static <ANN,DATASET extends Dataset<INSTANCE>,INSTANCE> | 
DatasetAdaptors.getGroupedDatasetSubset(GroupedDataset<ANN,DATASET,INSTANCE> data,
                       ANN... groups)
Takes a grouped dataset and returns a new dataset that contains only
 those groups specified. 
 | 
static <ANN,DATASET extends ListDataset<INSTANCE>,INSTANCE> | 
DatasetAdaptors.getRegroupedDataset(GroupedDataset<ANN,DATASET,INSTANCE> data,
                   Map<ANN,ANN[]> regroupCriteria)
Takes a grouped dataset and returns a new dataset with the groups
 re-shuffled as specified in the regrouping criteria. 
 | 
| Constructor and Description | 
|---|
ClassificationEvaluator(Classifier<CLASS,OBJECT> classifier,
                       GroupedDataset<CLASS,? extends ListDataset<OBJECT>,OBJECT> actual,
                       ClassificationAnalyser<RESULT,CLASS,OBJECT> analyser)
Construct a new  
ClassificationEvaluator with the given
 classifier, ground truth ("actual") data and an
 ClassificationAnalyser. | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
UKBenchGroupDataset<IMAGE>
A  
GroupedDataset of UKBenchListDatasets instances each of an
 item in the UKBench experiment. | 
| Constructor and Description | 
|---|
GroupedRandomisedPercentageHoldOut(double percentageTraining,
                                  GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> dataset)
Construct with the given dataset and percentage of training data (0..1). 
 | 
StratifiedGroupedRandomisedPercentageHoldOut(double percentageTraining,
                                            GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> dataset)
Construct with the given dataset and percentage of training data (0..1). 
 | 
| Modifier and Type | Method and Description | 
|---|---|
CrossValidationIterable<GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE>> | 
GroupedLeaveOneOut.createIterable(GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> data)  | 
CrossValidationIterable<GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE>> | 
StratifiedGroupedKFold.createIterable(GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> data)  | 
CrossValidationIterable<GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE>> | 
GroupedKFold.createIterable(GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> data)  | 
| Modifier and Type | Method and Description | 
|---|---|
CrossValidationIterable<GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE>> | 
GroupedLeaveOneOut.createIterable(GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> data)  | 
CrossValidationIterable<GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE>> | 
StratifiedGroupedKFold.createIterable(GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> data)  | 
CrossValidationIterable<GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE>> | 
GroupedKFold.createIterable(GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> data)  | 
| Modifier and Type | Method and Description | 
|---|---|
static <FEATURE,OBJECT,KEY> | 
DatasetExtractors.createLazyFeatureDataset(GroupedDataset<KEY,? extends ListDataset<OBJECT>,OBJECT> input,
                        FeatureExtractor<FEATURE,OBJECT> extractor)
Create a  
GroupedDataset of keys to ListDataset of
 features from the given GroupedDataset of keys to
 ListDatasets of objects by extracting the features from the
 objects with the given feature extractor. | 
| Modifier and Type | Method and Description | 
|---|---|
static <FEATURE,OBJECT,KEY> | 
DatasetExtractors.createLazyFeatureDataset(GroupedDataset<KEY,? extends ListDataset<OBJECT>,OBJECT> input,
                        FeatureExtractor<FEATURE,OBJECT> extractor)
Create a  
GroupedDataset of keys to ListDataset of
 features from the given GroupedDataset of keys to
 ListDatasets of objects by extracting the features from the
 objects with the given feature extractor. | 
| Modifier and Type | Method and Description | 
|---|---|
GroupedDataset<String,GroupedDataset<String,ListDataset<MMSys2013.Response>,MMSys2013.Response>,MMSys2013.Response> | 
MMSys2013.getExpertData()
Returns the results from the expert turkers. 
 | 
GroupedDataset<String,GroupedDataset<String,ListDataset<MMSys2013.Response>,MMSys2013.Response>,MMSys2013.Response> | 
MMSys2013.getGroundTruth()
Returns the ground truth set. 
 | 
GroupedDataset<String,GroupedDataset<String,ListDataset<MMSys2013.Response>,MMSys2013.Response>,MMSys2013.Response> | 
MMSys2013.getNonExpertData()
Returns the results from the non-expert turkers. 
 | 
static <IMAGE> GroupedDataset<String,ListDataset<IMAGE>,IMAGE> | 
CIFAR10Dataset.getTestImages(BinaryReader<IMAGE> reader)
Load the test images using the given reader. 
 | 
static <IMAGE> GroupedDataset<String,ListDataset<IMAGE>,IMAGE> | 
CIFAR100Dataset.getTestImages(BinaryReader<IMAGE> reader,
             boolean fineLabels)
Load the test images using the given reader. 
 | 
static <IMAGE> GroupedDataset<String,ListDataset<IMAGE>,IMAGE> | 
CIFAR10Dataset.getTrainingImages(BinaryReader<IMAGE> reader)
Load the training images using the given reader. 
 | 
static <IMAGE> GroupedDataset<String,ListDataset<IMAGE>,IMAGE> | 
CIFAR100Dataset.getTrainingImages(BinaryReader<IMAGE> reader,
                 boolean fineLabels)
Load the training images using the given reader. 
 | 
GroupedDataset<String,GroupedDataset<String,ListDataset<MMSys2013.Response>,MMSys2013.Response>,MMSys2013.Response> | 
MMSys2013.parseMetadata(File metadataFile)  | 
| Modifier and Type | Method and Description | 
|---|---|
GroupedDataset<String,GroupedDataset<String,ListDataset<MMSys2013.Response>,MMSys2013.Response>,MMSys2013.Response> | 
MMSys2013.getExpertData()
Returns the results from the expert turkers. 
 | 
GroupedDataset<String,GroupedDataset<String,ListDataset<MMSys2013.Response>,MMSys2013.Response>,MMSys2013.Response> | 
MMSys2013.getGroundTruth()
Returns the ground truth set. 
 | 
GroupedDataset<String,GroupedDataset<String,ListDataset<MMSys2013.Response>,MMSys2013.Response>,MMSys2013.Response> | 
MMSys2013.getNonExpertData()
Returns the results from the non-expert turkers. 
 | 
GroupedDataset<String,GroupedDataset<String,ListDataset<MMSys2013.Response>,MMSys2013.Response>,MMSys2013.Response> | 
MMSys2013.parseMetadata(File metadataFile)  | 
| Modifier and Type | Method and Description | 
|---|---|
static Map<String,List<ScoredAnnotation<MMSys2013.QuestionResponse>>> | 
MMSys2013.getAnnotationsQ1(GroupedDataset<String,ListDataset<MMSys2013.Response>,MMSys2013.Response> data)
For a given  
GroupedDataset that represents the results from a
 single category, returns a list of scored annotations for each group, for
 question 1 (contains depication of category). | 
static Map<String,List<ScoredAnnotation<MMSys2013.QuestionResponse>>> | 
MMSys2013.getAnnotationsQ2(GroupedDataset<String,ListDataset<MMSys2013.Response>,MMSys2013.Response> data)
For a given  
GroupedDataset that represents the results from a
 single category, returns a list of scored annotations for each group, for
 question 2 (is in category). | 
| Modifier and Type | Method and Description | 
|---|---|
<KEY> void | 
FisherImages.train(GroupedDataset<KEY,? extends ListDataset<FImage>,FImage> data)
Train on a grouped dataset. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static GroupedDataset<Boolean,ListDataset<FImage>,FImage> | 
INRIAPersonDataset.getTrainingData()  | 
| Modifier and Type | Method and Description | 
|---|---|
static <PERSON,IMAGE extends Image<?,IMAGE>,FACE extends DetectedFace> | 
DatasetFaceDetector.process(GroupedDataset<PERSON,? extends ListDataset<IMAGE>,IMAGE> input,
       FaceDetector<FACE,IMAGE> detector)
Apply a face detector to all the images in the given dataset, choosing
 only the biggest face if multiple are found. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <PERSON,IMAGE extends Image<?,IMAGE>,FACE extends DetectedFace> | 
DatasetFaceDetector.process(GroupedDataset<PERSON,? extends ListDataset<IMAGE>,IMAGE> input,
       FaceDetector<FACE,IMAGE> detector)
Apply a face detector to all the images in the given dataset, choosing
 only the biggest face if multiple are found. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<KEY> void | 
FisherFaceFeature.Extractor.train(GroupedDataset<KEY,? extends ListDataset<T>,T> data)
Train on a grouped dataset. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected void | 
EigenFaceRecogniser.beforeBatchTrain(GroupedDataset<PERSON,ListDataset<FACE>,FACE> dataset)  | 
protected void | 
FisherFaceRecogniser.beforeBatchTrain(GroupedDataset<PERSON,ListDataset<FACE>,FACE> dataset)  | 
void | 
FaceRecognitionEngine.train(GroupedDataset<PERSON,ListDataset<FImage>,FImage> dataset)
Train with a dataset 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected GroupedDataset<PERSON,? extends ListDataset<IMAGE>,IMAGE> | 
CrossValidationBenchmark.dataset  | 
| Modifier and Type | Field and Description | 
|---|---|
protected CrossValidator<GroupedDataset<PERSON,ListDataset<FACE>,FACE>> | 
CrossValidationBenchmark.crossValidator  | 
| Modifier and Type | Method and Description | 
|---|---|
FaceRecogniser<FACE,PERSON> | 
FaceRecogniserProvider.create(GroupedDataset<PERSON,? extends ListDataset<FACE>,FACE> dataset)
Create and train a new recogniser instance based on the given dataset 
 | 
| Constructor and Description | 
|---|
CrossValidationBenchmark(CrossValidator<GroupedDataset<PERSON,ListDataset<FACE>,FACE>> crossValidator,
                        GroupedDataset<PERSON,? extends ListDataset<IMAGE>,IMAGE> dataset,
                        FaceDetector<FACE,IMAGE> faceDetector,
                        FaceRecogniserProvider<FACE,PERSON> engine)
Construct the  
CrossValidationBenchmark experiment with the given
 dependent variables. | 
| Constructor and Description | 
|---|
CrossValidationBenchmark(CrossValidator<GroupedDataset<PERSON,ListDataset<FACE>,FACE>> crossValidator,
                        GroupedDataset<PERSON,? extends ListDataset<IMAGE>,IMAGE> dataset,
                        FaceDetector<FACE,IMAGE> faceDetector,
                        FaceRecogniserProvider<FACE,PERSON> engine)
Construct the  
CrossValidationBenchmark experiment with the given
 dependent variables. | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ATandTDataset
A Dataset for Our Database of Faces/The ORL Face Database/The AT&T Face
 database. 
 | 
class  | 
TextFileDataset
A simple dataset of people and their images, backed by a 
 text file with the following format: 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <OBJECT,ANNOTATION> | 
AnnotatedObject.createList(GroupedDataset<ANNOTATION,? extends ListDataset<OBJECT>,OBJECT> dataset)
Convert a grouped dataset to a list of annotated objects. 
 | 
void | 
IncrementalAnnotator.train(GroupedDataset<ANNOTATION,? extends ListDataset<OBJECT>,OBJECT> dataset)
Train the annotator with the given grouped dataset. 
 | 
void | 
BatchAnnotator.train(GroupedDataset<ANNOTATION,? extends ListDataset<OBJECT>,OBJECT> dataset)
Train the annotator with the given grouped dataset. 
 | 
void | 
IncrementalAnnotator.trainMultiClass(GroupedDataset<ANNOTATION,? extends ListDataset<OBJECT>,OBJECT> dataset)
Train the annotator with the given grouped dataset. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
LiblinearAnnotator.train(GroupedDataset<ANNOTATION,? extends ListDataset<OBJECT>,OBJECT> dataset)  | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
WineDataset
A  
Dataset instance of the standard wine clustering experiment found
 here: |