Modifier and Type | Method and Description |
---|---|
static long |
AudioDatasetHelper.calculateStreamLength(ListDataset<List<SampleBuffer>> samples)
Calculate the length of the stream of samples that will come from the dataset.
|
static AudioStream |
AudioDatasetHelper.getAudioStream(ListDataset<List<SampleBuffer>> samples)
From a dataset that contains sample buffers, this method will return an
AudioStream which will return each of the sample buffers in turn. |
Modifier and Type | Class and Description |
---|---|
class |
ListBackedDataset<T>
A
ListBackedDataset is a Dataset backed by an ordered list of
items. |
class |
ReadableListDataset<INSTANCE,SOURCE>
Base class for
ListDataset s in which each instance is read with an
InputStreamObjectReader . |
class |
VFSListDataset<INSTANCE>
A
ListDataset backed by a directory of items (either locally or
remotely), or items stored in a compressed archive. |
Modifier and Type | Method and Description |
---|---|
ListDataset<IdentifiableObject<INSTANCE>> |
ReadableListDataset.toIdentifiable()
Create a view of this dataset in which the instances are wrapped up in
IdentifiableObject s. |
Modifier and Type | Method and Description |
---|---|
GroupedDataset<KEY,ListDataset<OBJECT>,OBJECT> |
GroupedListCache.getDataset() |
GroupedDataset<KEY,ListDataset<OBJECT>,OBJECT> |
InMemoryGroupedListCache.getDataset() |
Modifier and Type | Method and Description |
---|---|
ListDataset<INSTANCE> |
UniformRandomisedSampler.sample(ListDataset<INSTANCE> dataset) |
Modifier and Type | Method and Description |
---|---|
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> |
NamedGroupSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset) |
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> |
GroupSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset) |
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> |
GroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset) |
static <KEY,INSTANCE> |
NamedGroupSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
Collection<KEY> keys)
Sample a dataset by selecting only the given group keys.
|
static <KEY,INSTANCE> |
GroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
double percentage)
Sample a dataset with the given percentage of instances to select.
|
static <KEY,INSTANCE> |
GroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
double percentage,
boolean withReplacement)
Sample a dataset with the given percentage of instances to select, using
with with-replacement or without-replacement sampling.
|
static <KEY,INSTANCE> |
GroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
int number)
Sample a dataset with the given number of instances to select.
|
static <KEY,INSTANCE> |
GroupSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
int numGroups,
boolean random)
Sample a dataset with the given number of groups to select.
|
static <KEY,INSTANCE> |
GroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
int number,
boolean withReplacement)
Sample a dataset with the given number of instances to select, using with
with-replacement or without-replacement sampling.
|
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> |
StratifiedGroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> dataset) |
Modifier and Type | Method and Description |
---|---|
ListDataset<INSTANCE> |
UniformRandomisedSampler.sample(ListDataset<INSTANCE> dataset) |
Modifier and Type | Method and Description |
---|---|
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> |
NamedGroupSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset) |
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> |
GroupSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset) |
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> |
GroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset) |
static <KEY,INSTANCE> |
NamedGroupSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
Collection<KEY> keys)
Sample a dataset by selecting only the given group keys.
|
static <KEY,INSTANCE> |
GroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
double percentage)
Sample a dataset with the given percentage of instances to select.
|
static <KEY,INSTANCE> |
GroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
double percentage,
boolean withReplacement)
Sample a dataset with the given percentage of instances to select, using
with with-replacement or without-replacement sampling.
|
static <KEY,INSTANCE> |
GroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
int number)
Sample a dataset with the given number of instances to select.
|
static <KEY,INSTANCE> |
GroupSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
int numGroups,
boolean random)
Sample a dataset with the given number of groups to select.
|
static <KEY,INSTANCE> |
GroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
int number,
boolean withReplacement)
Sample a dataset with the given number of instances to select, using with
with-replacement or without-replacement sampling.
|
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> |
StratifiedGroupedUniformRandomisedSampler.sample(GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> dataset) |
Modifier and Type | Method and Description |
---|---|
static <KEY,INSTANCE> |
GroupedRandomSplitter.createCrossValidationData(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
int numTraining,
int numValidation,
int numIterations)
Create a
CrossValidationIterable from the dataset. |
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> |
GroupedRandomSplitter.getTestDataset() |
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> |
GroupedRandomSplitter.getTrainingDataset() |
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> |
GroupedRandomSplitter.getValidationDataset() |
Modifier and Type | Method and Description |
---|---|
static <KEY,INSTANCE> |
GroupedRandomSplitter.createCrossValidationData(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
int numTraining,
int numValidation,
int numIterations)
Create a
CrossValidationIterable from the dataset. |
Constructor and Description |
---|
GroupedRandomSplitter(GroupedDataset<KEY,? extends ListDataset<INSTANCE>,INSTANCE> dataset,
int numTraining,
int numValidation,
int numTesting)
Construct the dataset splitter with the given target instance sizes for
each group of the training, validation and testing data.
|
Modifier and Type | Method and Description |
---|---|
static <ANN,DATASET extends ListDataset<INSTANCE>,INSTANCE> |
DatasetAdaptors.getRegroupedDataset(GroupedDataset<ANN,DATASET,INSTANCE> data,
Map<ANN,ANN[]> regroupCriteria)
Takes a grouped dataset and returns a new dataset with the groups
re-shuffled as specified in the regrouping criteria.
|
Modifier and Type | Method and Description |
---|---|
static <ANN,INSTANCE> |
DatasetAdaptors.flattenListGroupedDataset(GroupedDataset<ANN,? extends ListDataset<List<INSTANCE>>,? extends List<INSTANCE>> dataset)
if you have a grouped dataset where the groups contains lists of feature
objects (i.e.
|
Modifier and Type | Method and Description |
---|---|
static <ANN,INSTANCE> |
DatasetAdaptors.flattenListGroupedDataset(GroupedDataset<ANN,? extends ListDataset<List<INSTANCE>>,? extends List<INSTANCE>> dataset)
if you have a grouped dataset where the groups contains lists of feature
objects (i.e.
|
Constructor and Description |
---|
ClassificationEvaluator(Classifier<CLASS,OBJECT> classifier,
GroupedDataset<CLASS,? extends ListDataset<OBJECT>,OBJECT> actual,
ClassificationAnalyser<RESULT,CLASS,OBJECT> analyser)
Construct a new
ClassificationEvaluator with the given
classifier, ground truth ("actual") data and an
ClassificationAnalyser . |
Modifier and Type | Class and Description |
---|---|
class |
UKBenchListDataset<IMAGE> |
Constructor and Description |
---|
RandomisedPercentageHoldOut(double percentageTraining,
ListDataset<INSTANCE> dataset)
Construct with the given dataset and percentage of training
data (0..1).
|
Constructor and Description |
---|
GroupedRandomisedPercentageHoldOut(double percentageTraining,
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> dataset)
Construct with the given dataset and percentage of training data (0..1).
|
StratifiedGroupedRandomisedPercentageHoldOut(double percentageTraining,
GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> dataset)
Construct with the given dataset and percentage of training data (0..1).
|
Modifier and Type | Method and Description |
---|---|
CrossValidationIterable<GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE>> |
GroupedLeaveOneOut.createIterable(GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> data) |
CrossValidationIterable<GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE>> |
StratifiedGroupedKFold.createIterable(GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> data) |
CrossValidationIterable<GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE>> |
GroupedKFold.createIterable(GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> data) |
CrossValidationIterable<ListDataset<INSTANCE>> |
KFold.createIterable(ListDataset<INSTANCE> data) |
CrossValidationIterable<ListDataset<INSTANCE>> |
LeaveOneOut.createIterable(ListDataset<INSTANCE> data) |
Modifier and Type | Method and Description |
---|---|
CrossValidationIterable<ListDataset<INSTANCE>> |
KFold.createIterable(ListDataset<INSTANCE> data) |
CrossValidationIterable<ListDataset<INSTANCE>> |
LeaveOneOut.createIterable(ListDataset<INSTANCE> data) |
Modifier and Type | Method and Description |
---|---|
CrossValidationIterable<GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE>> |
GroupedLeaveOneOut.createIterable(GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> data) |
CrossValidationIterable<GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE>> |
StratifiedGroupedKFold.createIterable(GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> data) |
CrossValidationIterable<GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE>> |
GroupedKFold.createIterable(GroupedDataset<KEY,ListDataset<INSTANCE>,INSTANCE> data) |
Modifier and Type | Method and Description |
---|---|
static <FEATURE,OBJECT> |
DatasetExtractors.createLazyFeatureDataset(ListDataset<OBJECT> input,
FeatureExtractor<FEATURE,OBJECT> extractor)
Create a
ListDataset of features from the given
ListDataset of objects by extracting the features from the
objects with the given feature extractor. |
Modifier and Type | Method and Description |
---|---|
static <FEATURE,OBJECT,KEY> |
DatasetExtractors.createLazyFeatureDataset(GroupedDataset<KEY,? extends ListDataset<OBJECT>,OBJECT> input,
FeatureExtractor<FEATURE,OBJECT> extractor)
Create a
GroupedDataset of keys to ListDataset of
features from the given GroupedDataset of keys to
ListDataset s of objects by extracting the features from the
objects with the given feature extractor. |
Modifier and Type | Method and Description |
---|---|
static <FEATURE,OBJECT> |
DatasetExtractors.createLazyFeatureDataset(ListDataset<OBJECT> input,
FeatureExtractor<FEATURE,OBJECT> extractor)
Create a
ListDataset of features from the given
ListDataset of objects by extracting the features from the
objects with the given feature extractor. |
Modifier and Type | Method and Description |
---|---|
static <FEATURE,OBJECT,KEY> |
DatasetExtractors.createLazyFeatureDataset(GroupedDataset<KEY,? extends ListDataset<OBJECT>,OBJECT> input,
FeatureExtractor<FEATURE,OBJECT> extractor)
Create a
GroupedDataset of keys to ListDataset of
features from the given GroupedDataset of keys to
ListDataset s of objects by extracting the features from the
objects with the given feature extractor. |
Modifier and Type | Class and Description |
---|---|
class |
Corel5kDataset |
Modifier and Type | Method and Description |
---|---|
ListDataset<CorelAnnotatedImage> |
StandardCorel5kSplit.getTestDataset() |
ListDataset<CorelAnnotatedImage> |
StandardCorel5kSplit.getTrainingDataset() |
Modifier and Type | Method and Description |
---|---|
GroupedDataset<String,GroupedDataset<String,ListDataset<MMSys2013.Response>,MMSys2013.Response>,MMSys2013.Response> |
MMSys2013.getExpertData()
Returns the results from the expert turkers.
|
GroupedDataset<String,GroupedDataset<String,ListDataset<MMSys2013.Response>,MMSys2013.Response>,MMSys2013.Response> |
MMSys2013.getGroundTruth()
Returns the ground truth set.
|
GroupedDataset<String,GroupedDataset<String,ListDataset<MMSys2013.Response>,MMSys2013.Response>,MMSys2013.Response> |
MMSys2013.getNonExpertData()
Returns the results from the non-expert turkers.
|
static <IMAGE> GroupedDataset<String,ListDataset<IMAGE>,IMAGE> |
CIFAR10Dataset.getTestImages(BinaryReader<IMAGE> reader)
Load the test images using the given reader.
|
static <IMAGE> GroupedDataset<String,ListDataset<IMAGE>,IMAGE> |
CIFAR100Dataset.getTestImages(BinaryReader<IMAGE> reader,
boolean fineLabels)
Load the test images using the given reader.
|
static <IMAGE> GroupedDataset<String,ListDataset<IMAGE>,IMAGE> |
CIFAR10Dataset.getTrainingImages(BinaryReader<IMAGE> reader)
Load the training images using the given reader.
|
static <IMAGE> GroupedDataset<String,ListDataset<IMAGE>,IMAGE> |
CIFAR100Dataset.getTrainingImages(BinaryReader<IMAGE> reader,
boolean fineLabels)
Load the training images using the given reader.
|
GroupedDataset<String,GroupedDataset<String,ListDataset<MMSys2013.Response>,MMSys2013.Response>,MMSys2013.Response> |
MMSys2013.parseMetadata(File metadataFile) |
Modifier and Type | Method and Description |
---|---|
static Map<String,List<ScoredAnnotation<MMSys2013.QuestionResponse>>> |
MMSys2013.getAnnotationsQ1(GroupedDataset<String,ListDataset<MMSys2013.Response>,MMSys2013.Response> data)
For a given
GroupedDataset that represents the results from a
single category, returns a list of scored annotations for each group, for
question 1 (contains depication of category). |
static Map<String,List<ScoredAnnotation<MMSys2013.QuestionResponse>>> |
MMSys2013.getAnnotationsQ2(GroupedDataset<String,ListDataset<MMSys2013.Response>,MMSys2013.Response> data)
For a given
GroupedDataset that represents the results from a
single category, returns a list of scored annotations for each group, for
question 2 (is in category). |
Modifier and Type | Class and Description |
---|---|
class |
BingImageDataset<IMAGE extends Image<?,IMAGE>>
Image datasets dynamically created from the Bing search API.
|
class |
FlickrImageDataset<IMAGE extends Image<?,IMAGE>>
Class to dynamically create image datasets from flickr through various api
calls.
|
Modifier and Type | Method and Description |
---|---|
<KEY> void |
FisherImages.train(GroupedDataset<KEY,? extends ListDataset<FImage>,FImage> data)
Train on a grouped dataset.
|
Modifier and Type | Interface and Description |
---|---|
interface |
ShapeModelDataset<IMAGE extends Image<?,IMAGE>>
Dataset representing pairs of images and fixed size sets of points, together
with a set of connections between points which are valid across all
instances.
|
Modifier and Type | Method and Description |
---|---|
static <IMAGE extends Image<?,IMAGE>> |
INRIAPersonDataset.generateNegativeExamples(int numSamplesPerImage,
int width,
int height,
long seed,
InputStreamObjectReader<IMAGE> reader) |
static <IMAGE extends Image<?,IMAGE>> |
INRIAPersonDataset.getNegativeTrainingImages(InputStreamObjectReader<IMAGE> reader) |
static <IMAGE extends Image<?,IMAGE>> |
INRIAPersonDataset.getPositiveTrainingImages(InputStreamObjectReader<IMAGE> reader) |
Modifier and Type | Method and Description |
---|---|
static GroupedDataset<Boolean,ListDataset<FImage>,FImage> |
INRIAPersonDataset.getTrainingData() |
Modifier and Type | Method and Description |
---|---|
static <IMAGE extends Image<?,IMAGE>,FACE extends DetectedFace> |
DatasetFaceDetector.process(List<IMAGE> instances,
FaceDetector<FACE,IMAGE> detector)
Apply a face detector to all the images in the given dataset, choosing
only the biggest face if multiple are found.
|
Modifier and Type | Method and Description |
---|---|
static <PERSON,IMAGE extends Image<?,IMAGE>,FACE extends DetectedFace> |
DatasetFaceDetector.process(GroupedDataset<PERSON,? extends ListDataset<IMAGE>,IMAGE> input,
FaceDetector<FACE,IMAGE> detector)
Apply a face detector to all the images in the given dataset, choosing
only the biggest face if multiple are found.
|
Modifier and Type | Method and Description |
---|---|
static <PERSON,IMAGE extends Image<?,IMAGE>,FACE extends DetectedFace> |
DatasetFaceDetector.process(GroupedDataset<PERSON,? extends ListDataset<IMAGE>,IMAGE> input,
FaceDetector<FACE,IMAGE> detector)
Apply a face detector to all the images in the given dataset, choosing
only the biggest face if multiple are found.
|
Modifier and Type | Class and Description |
---|---|
class |
FDDBDataset |
Modifier and Type | Method and Description |
---|---|
List<Results> |
FDDBEvaluation.performEvaluation(ListDataset<FDDBRecord> dataset,
FDDBEvaluation.EvaluationDetector detector) |
Modifier and Type | Method and Description |
---|---|
<KEY> void |
FisherFaceFeature.Extractor.train(GroupedDataset<KEY,? extends ListDataset<T>,T> data)
Train on a grouped dataset.
|
Modifier and Type | Method and Description |
---|---|
protected void |
EigenFaceRecogniser.beforeBatchTrain(GroupedDataset<PERSON,ListDataset<FACE>,FACE> dataset) |
protected void |
FisherFaceRecogniser.beforeBatchTrain(GroupedDataset<PERSON,ListDataset<FACE>,FACE> dataset) |
void |
FaceRecognitionEngine.train(GroupedDataset<PERSON,ListDataset<FImage>,FImage> dataset)
Train with a dataset
|
Modifier and Type | Field and Description |
---|---|
protected CrossValidator<GroupedDataset<PERSON,ListDataset<FACE>,FACE>> |
CrossValidationBenchmark.crossValidator |
protected GroupedDataset<PERSON,? extends ListDataset<IMAGE>,IMAGE> |
CrossValidationBenchmark.dataset |
Modifier and Type | Method and Description |
---|---|
FaceRecogniser<FACE,PERSON> |
FaceRecogniserProvider.create(GroupedDataset<PERSON,? extends ListDataset<FACE>,FACE> dataset)
Create and train a new recogniser instance based on the given dataset
|
Constructor and Description |
---|
CrossValidationBenchmark(CrossValidator<GroupedDataset<PERSON,ListDataset<FACE>,FACE>> crossValidator,
GroupedDataset<PERSON,? extends ListDataset<IMAGE>,IMAGE> dataset,
FaceDetector<FACE,IMAGE> faceDetector,
FaceRecogniserProvider<FACE,PERSON> engine)
Construct the
CrossValidationBenchmark experiment with the given
dependent variables. |
CrossValidationBenchmark(CrossValidator<GroupedDataset<PERSON,ListDataset<FACE>,FACE>> crossValidator,
GroupedDataset<PERSON,? extends ListDataset<IMAGE>,IMAGE> dataset,
FaceDetector<FACE,IMAGE> faceDetector,
FaceRecogniserProvider<FACE,PERSON> engine)
Construct the
CrossValidationBenchmark experiment with the given
dependent variables. |
Modifier and Type | Method and Description |
---|---|
static <OBJECT,ANNOTATION> |
AnnotatedObject.createList(GroupedDataset<ANNOTATION,? extends ListDataset<OBJECT>,OBJECT> dataset)
Convert a grouped dataset to a list of annotated objects.
|
void |
IncrementalAnnotator.train(GroupedDataset<ANNOTATION,? extends ListDataset<OBJECT>,OBJECT> dataset)
Train the annotator with the given grouped dataset.
|
void |
BatchAnnotator.train(GroupedDataset<ANNOTATION,? extends ListDataset<OBJECT>,OBJECT> dataset)
Train the annotator with the given grouped dataset.
|
void |
IncrementalAnnotator.trainMultiClass(GroupedDataset<ANNOTATION,? extends ListDataset<OBJECT>,OBJECT> dataset)
Train the annotator with the given grouped dataset.
|
Modifier and Type | Method and Description |
---|---|
void |
LiblinearAnnotator.train(GroupedDataset<ANNOTATION,? extends ListDataset<OBJECT>,OBJECT> dataset) |