Package | Description |
---|---|
org.openimaj.image.feature.local.aggregate |
Implementations of techniques that aggregate the local descriptors
of an image into a single (typically fixed length) vector
representation.
|
org.openimaj.ml.clustering | |
org.openimaj.ml.clustering.assignment.hard | |
org.openimaj.ml.clustering.assignment.soft | |
org.openimaj.ml.clustering.kmeans |
K-Means in OpenIMAJ is designed to be both extremely fast and flexible.
|
org.openimaj.ml.clustering.rac |
Constructor and Description |
---|
VLAD(HardAssigner<T,?,?> assigner,
CentroidsProvider<T> centroids,
boolean normalise)
Construct with the given assigner and the centroids associated with the
assigner.
|
Modifier and Type | Class and Description |
---|---|
class |
ByteCentroidsResult
The result of a
SpatialClusterer that just produces a flat set of centroids. |
class |
DoubleCentroidsResult
The result of a
SpatialClusterer that just produces a flat set of centroids. |
class |
FeatureVectorCentroidsResult<T extends FeatureVector>
The result of a
SpatialClusterer that just produces a flat set of
centroids in the form of FeatureVector s. |
class |
FloatCentroidsResult
The result of a
SpatialClusterer that just produces a flat set of centroids. |
class |
IntCentroidsResult
The result of a
SpatialClusterer that just produces a flat set of centroids. |
class |
LongCentroidsResult
The result of a
SpatialClusterer that just produces a flat set of centroids. |
class |
ShortCentroidsResult
The result of a
SpatialClusterer that just produces a flat set of centroids. |
Constructor and Description |
---|
ExactByteAssigner(CentroidsProvider<byte[]> provider)
Construct the assigner using the given cluster data.
|
ExactByteAssigner(CentroidsProvider<byte[]> provider,
ByteFVComparator comparison)
Construct the assigner using the given cluster data and
distance function.
|
ExactDoubleAssigner(CentroidsProvider<double[]> provider)
Construct the assigner using the given cluster data.
|
ExactDoubleAssigner(CentroidsProvider<double[]> provider,
DoubleFVComparator comparison)
Construct the assigner using the given cluster data and
distance function.
|
ExactFeatureVectorAssigner(CentroidsProvider<T> provider,
DistanceComparator<? super T> comparison)
Construct the assigner using the given cluster data and distance
function.
|
ExactFloatAssigner(CentroidsProvider<float[]> provider)
Construct the assigner using the given cluster data.
|
ExactFloatAssigner(CentroidsProvider<float[]> provider,
FloatFVComparator comparison)
Construct the assigner using the given cluster data and
distance function.
|
ExactIntAssigner(CentroidsProvider<int[]> provider)
Construct the assigner using the given cluster data.
|
ExactIntAssigner(CentroidsProvider<int[]> provider,
IntFVComparator comparison)
Construct the assigner using the given cluster data and
distance function.
|
ExactLongAssigner(CentroidsProvider<long[]> provider)
Construct the assigner using the given cluster data.
|
ExactLongAssigner(CentroidsProvider<long[]> provider,
LongFVComparator comparison)
Construct the assigner using the given cluster data and
distance function.
|
ExactShortAssigner(CentroidsProvider<short[]> provider)
Construct the assigner using the given cluster data.
|
ExactShortAssigner(CentroidsProvider<short[]> provider,
ShortFVComparator comparison)
Construct the assigner using the given cluster data and
distance function.
|
KDTreeByteEuclideanAssigner(CentroidsProvider<byte[]> provider)
Construct the assigner using the given cluster data.
|
KDTreeDoubleEuclideanAssigner(CentroidsProvider<double[]> provider)
Construct the assigner using the given cluster data.
|
KDTreeFloatEuclideanAssigner(CentroidsProvider<float[]> provider)
Construct the assigner using the given cluster data.
|
KDTreeIntEuclideanAssigner(CentroidsProvider<int[]> provider)
Construct the assigner using the given cluster data.
|
KDTreeLongEuclideanAssigner(CentroidsProvider<long[]> provider)
Construct the assigner using the given cluster data.
|
KDTreeShortEuclideanAssigner(CentroidsProvider<short[]> provider)
Construct the assigner using the given cluster data.
|
Modifier and Type | Field and Description |
---|---|
protected Map<CentroidsProvider<int[]>,HardAssigner<int[],float[],IntFloatPair>> |
HierarchicalIntPathAssigner.assigners |
protected Map<CentroidsProvider<float[]>,HardAssigner<float[],float[],IntFloatPair>> |
HierarchicalFloatPathAssigner.assigners |
protected Map<CentroidsProvider<byte[]>,HardAssigner<byte[],float[],IntFloatPair>> |
HierarchicalBytePathAssigner.assigners |
protected Map<CentroidsProvider<long[]>,HardAssigner<long[],double[],IntDoublePair>> |
HierarchicalLongPathAssigner.assigners |
protected Map<CentroidsProvider<double[]>,HardAssigner<double[],double[],IntDoublePair>> |
HierarchicalDoublePathAssigner.assigners |
protected Map<CentroidsProvider<short[]>,HardAssigner<short[],float[],IntFloatPair>> |
HierarchicalShortPathAssigner.assigners |
Constructor and Description |
---|
ByteKNNAssigner(CentroidsProvider<byte[]> provider,
boolean exact,
int numNeighbours)
Construct the assigner using the given cluster data.
|
ByteKNNAssigner(CentroidsProvider<byte[]> provider,
ByteFVComparison comparison,
int numNeighbours)
Construct the assigner using the given cluster data and
distance function.
|
DoubleKNNAssigner(CentroidsProvider<double[]> provider,
boolean exact,
int numNeighbours)
Construct the assigner using the given cluster data.
|
DoubleKNNAssigner(CentroidsProvider<double[]> provider,
DoubleFVComparison comparison,
int numNeighbours)
Construct the assigner using the given cluster data and
distance function.
|
FloatKNNAssigner(CentroidsProvider<float[]> provider,
boolean exact,
int numNeighbours)
Construct the assigner using the given cluster data.
|
FloatKNNAssigner(CentroidsProvider<float[]> provider,
FloatFVComparison comparison,
int numNeighbours)
Construct the assigner using the given cluster data and
distance function.
|
IntKNNAssigner(CentroidsProvider<int[]> provider,
boolean exact,
int numNeighbours)
Construct the assigner using the given cluster data.
|
IntKNNAssigner(CentroidsProvider<int[]> provider,
IntFVComparison comparison,
int numNeighbours)
Construct the assigner using the given cluster data and
distance function.
|
LongKNNAssigner(CentroidsProvider<long[]> provider,
boolean exact,
int numNeighbours)
Construct the assigner using the given cluster data.
|
LongKNNAssigner(CentroidsProvider<long[]> provider,
LongFVComparison comparison,
int numNeighbours)
Construct the assigner using the given cluster data and
distance function.
|
ShortKNNAssigner(CentroidsProvider<short[]> provider,
boolean exact,
int numNeighbours)
Construct the assigner using the given cluster data.
|
ShortKNNAssigner(CentroidsProvider<short[]> provider,
ShortFVComparison comparison,
int numNeighbours)
Construct the assigner using the given cluster data and
distance function.
|
Modifier and Type | Class and Description |
---|---|
static class |
ByteKMeans.Result
Result object for ByteKMeans, extending ByteCentroidsResult and ByteNearestNeighboursProvider,
as well as giving access to state information from the operation of the K-Means algorithm
(i.e.
|
static class |
DoubleKMeans.Result
Result object for DoubleKMeans, extending DoubleCentroidsResult and DoubleNearestNeighboursProvider,
as well as giving access to state information from the operation of the K-Means algorithm
(i.e.
|
static class |
FeatureVectorKMeans.Result<T extends FeatureVector>
Result object for FeatureVectorKMeans, extending
FeatureVectorCentroidsResult and ObjectNearestNeighboursProvider, as well
as giving access to state information from the operation of the K-Means
algorithm (i.e.
|
static class |
FloatKMeans.Result
Result object for FloatKMeans, extending FloatCentroidsResult and FloatNearestNeighboursProvider,
as well as giving access to state information from the operation of the K-Means algorithm
(i.e.
|
static class |
IntKMeans.Result
Result object for IntKMeans, extending IntCentroidsResult and IntNearestNeighboursProvider,
as well as giving access to state information from the operation of the K-Means algorithm
(i.e.
|
static class |
LongKMeans.Result
Result object for LongKMeans, extending LongCentroidsResult and LongNearestNeighboursProvider,
as well as giving access to state information from the operation of the K-Means algorithm
(i.e.
|
static class |
ShortKMeans.Result
Result object for ShortKMeans, extending ShortCentroidsResult and ShortNearestNeighboursProvider,
as well as giving access to state information from the operation of the K-Means algorithm
(i.e.
|
class |
SphericalKMeansResult
The result of a
SpatialClusterer that just produces a flat set of
centroids. |
Modifier and Type | Class and Description |
---|---|
class |
ClusterLimitedIntRAC
Similar to
IntRAC but explicitly specify the limit the number of
clusters. |
class |
IntRAC
An implementation of the RAC algorithm proposed by Ramanan and Niranjan.
|