Package | Description |
---|---|
org.openimaj.data | |
org.openimaj.feature.local.data | |
org.openimaj.knn.pq | |
org.openimaj.ml.clustering | |
org.openimaj.ml.clustering.dbscan | |
org.openimaj.ml.clustering.kdtree | |
org.openimaj.ml.clustering.kmeans |
K-Means in OpenIMAJ is designed to be both extremely fast and flexible.
|
org.openimaj.ml.clustering.rac | |
org.openimaj.ml.clustering.random | |
org.openimaj.ml.clustering.rforest | |
org.openimaj.tools.clusterquantiser.samplebatch | |
org.openimaj.workinprogress.optimisation |
Modifier and Type | Class and Description |
---|---|
class |
AbstractDataSource<DATATYPE>
Abstract base class for
DataSource implementations. |
class |
AbstractMultiListDataSource<DATATYPE,ELEMENTTYPE>
An abstract
DataSource backed by multiple lists of data. |
class |
ArrayBackedDataSource<T>
A
DataSource backed by an array. |
class |
ByteArrayBackedDataSource
A
DataSource backed by a 2D array of bytes. |
class |
DoubleArrayBackedDataSource
A
DataSource backed by a 2D array of doubles. |
class |
FloatArrayBackedDataSource
A
DataSource backed by a 2D array of floats. |
class |
IndexedViewDataSource<DATATYPE>
This
DataSource provides an indexed view of a subset of another
DataSource . |
class |
IntArrayBackedDataSource
A
DataSource backed by a 2D array of ints. |
class |
LongArrayBackedDataSource
A
DataSource backed by a 2D array of longs. |
class |
RandomSampleDataSource<DATATYPE>
This
DataSource provides randomly sampled view over another
DataSource . |
class |
ShortArrayBackedDataSource
A
DataSource backed by a 2D array of shorts. |
Constructor and Description |
---|
IndexedViewDataSource(DataSource<DATATYPE> dataSource,
int[] indexes)
Construct a new
IndexedViewDataSource with the given inner data
and indexes into the inner data. |
RandomSampleDataSource(DataSource<DATATYPE> dataSource,
double proportion)
Construct the view over the given
DataSource such that it has the
given proportion of items from the original. |
RandomSampleDataSource(DataSource<DATATYPE> dataSource,
int requestedSize)
Construct the view over the given
DataSource such that it has
requestedSize items. |
Modifier and Type | Class and Description |
---|---|
class |
LocalFeatureListDataSource<T extends LocalFeature<?,? extends ArrayFeatureVector<F>>,F>
A
DataSource for the feature vector of one or more lists of
LocalFeature s that use an ArrayFeatureVector for the feature
vector. |
Constructor and Description |
---|
IncrementalByteADCNearestNeighbours(ByteProductQuantiser pq,
DataSource<byte[]> dataPoints)
Construct the ADC with the given quantiser and data points.
|
IncrementalDoubleADCNearestNeighbours(DoubleProductQuantiser pq,
DataSource<double[]> dataPoints)
Construct the ADC with the given quantiser and data points.
|
IncrementalFloatADCNearestNeighbours(FloatProductQuantiser pq,
DataSource<float[]> dataPoints)
Construct the ADC with the given quantiser and data points.
|
IncrementalIntADCNearestNeighbours(IntProductQuantiser pq,
DataSource<int[]> dataPoints)
Construct the ADC with the given quantiser and data points.
|
IncrementalLongADCNearestNeighbours(LongProductQuantiser pq,
DataSource<long[]> dataPoints)
Construct the ADC with the given quantiser and data points.
|
IncrementalShortADCNearestNeighbours(ShortProductQuantiser pq,
DataSource<short[]> dataPoints)
Construct the ADC with the given quantiser and data points.
|
Modifier and Type | Method and Description |
---|---|
CLUSTERTYPE |
SpatialClusterer.cluster(DataSource<DATATYPE> data)
Perform clustering with data from a data source.
|
Modifier and Type | Method and Description |
---|---|
DoubleDBSCANClusters |
DoubleNNDBSCAN.cluster(DataSource<double[]> data) |
Modifier and Type | Method and Description |
---|---|
KDTreeClusters |
DoubleKDTreeClusterer.cluster(DataSource<double[]> data) |
Modifier and Type | Method and Description |
---|---|
HierarchicalByteKMeansResult |
HierarchicalByteKMeans.cluster(DataSource<byte[]> data) |
ByteKMeans.Result |
ByteKMeans.cluster(DataSource<byte[]> ds) |
void |
ByteKMeans.cluster(DataSource<byte[]> data,
ByteKMeans.Result result)
Main clustering algorithm.
|
protected ByteKMeans.Result |
ByteKMeans.cluster(DataSource<byte[]> data,
int K)
Initiate clustering with the given data and number of clusters.
|
SphericalKMeansResult |
SphericalKMeans.cluster(DataSource<double[]> data) |
HierarchicalDoubleKMeansResult |
HierarchicalDoubleKMeans.cluster(DataSource<double[]> data) |
DoubleKMeans.Result |
DoubleKMeans.cluster(DataSource<double[]> ds) |
void |
DoubleKMeans.cluster(DataSource<double[]> data,
DoubleKMeans.Result result)
Main clustering algorithm.
|
protected DoubleKMeans.Result |
DoubleKMeans.cluster(DataSource<double[]> data,
int K)
Initiate clustering with the given data and number of clusters.
|
FloatKMeans.Result |
FloatKMeans.cluster(DataSource<float[]> ds) |
HierarchicalFloatKMeansResult |
HierarchicalFloatKMeans.cluster(DataSource<float[]> data) |
void |
FloatKMeans.cluster(DataSource<float[]> data,
FloatKMeans.Result result)
Main clustering algorithm.
|
protected FloatKMeans.Result |
FloatKMeans.cluster(DataSource<float[]> data,
int K)
Initiate clustering with the given data and number of clusters.
|
HierarchicalIntKMeansResult |
HierarchicalIntKMeans.cluster(DataSource<int[]> data) |
IntKMeans.Result |
IntKMeans.cluster(DataSource<int[]> ds) |
protected IntKMeans.Result |
IntKMeans.cluster(DataSource<int[]> data,
int K)
Initiate clustering with the given data and number of clusters.
|
void |
IntKMeans.cluster(DataSource<int[]> data,
IntKMeans.Result result)
Main clustering algorithm.
|
HierarchicalLongKMeansResult |
HierarchicalLongKMeans.cluster(DataSource<long[]> data) |
LongKMeans.Result |
LongKMeans.cluster(DataSource<long[]> ds) |
protected LongKMeans.Result |
LongKMeans.cluster(DataSource<long[]> data,
int K)
Initiate clustering with the given data and number of clusters.
|
void |
LongKMeans.cluster(DataSource<long[]> data,
LongKMeans.Result result)
Main clustering algorithm.
|
ShortKMeans.Result |
ShortKMeans.cluster(DataSource<short[]> ds) |
HierarchicalShortKMeansResult |
HierarchicalShortKMeans.cluster(DataSource<short[]> data) |
protected ShortKMeans.Result |
ShortKMeans.cluster(DataSource<short[]> data,
int K)
Initiate clustering with the given data and number of clusters.
|
void |
ShortKMeans.cluster(DataSource<short[]> data,
ShortKMeans.Result result)
Main clustering algorithm.
|
FeatureVectorCentroidsResult<T> |
FeatureVectorKMeans.cluster(DataSource<T> ds) |
protected void |
FeatureVectorKMeans.cluster(DataSource<T> data,
FeatureVectorKMeans.Result<T> result)
Main clustering algorithm.
|
protected FeatureVectorKMeans.Result<T> |
FeatureVectorKMeans.cluster(DataSource<T> data,
int K)
Initiate clustering with the given data and number of clusters.
|
abstract void |
ByteKMeansInit.initKMeans(DataSource<byte[]> bds,
byte[][] clusters)
Initialise the centroids based on the given data.
|
void |
ByteKMeansInit.RANDOM.initKMeans(DataSource<byte[]> bds,
byte[][] clusters) |
abstract void |
DoubleKMeansInit.initKMeans(DataSource<double[]> bds,
double[][] clusters)
Initialise the centroids based on the given data.
|
void |
DoubleKMeansInit.RANDOM.initKMeans(DataSource<double[]> bds,
double[][] clusters) |
abstract void |
FloatKMeansInit.initKMeans(DataSource<float[]> bds,
float[][] clusters)
Initialise the centroids based on the given data.
|
void |
FloatKMeansInit.RANDOM.initKMeans(DataSource<float[]> bds,
float[][] clusters) |
abstract void |
IntKMeansInit.initKMeans(DataSource<int[]> bds,
int[][] clusters)
Initialise the centroids based on the given data.
|
void |
IntKMeansInit.RANDOM.initKMeans(DataSource<int[]> bds,
int[][] clusters) |
abstract void |
LongKMeansInit.initKMeans(DataSource<long[]> bds,
long[][] clusters)
Initialise the centroids based on the given data.
|
void |
LongKMeansInit.RANDOM.initKMeans(DataSource<long[]> bds,
long[][] clusters) |
abstract void |
ShortKMeansInit.initKMeans(DataSource<short[]> bds,
short[][] clusters)
Initialise the centroids based on the given data.
|
void |
ShortKMeansInit.RANDOM.initKMeans(DataSource<short[]> bds,
short[][] clusters) |
abstract void |
FeatureVectorKMeansInit.initKMeans(DataSource<T> bds,
T[] clusters)
Initialise the centroids based on the given data.
|
void |
FeatureVectorKMeansInit.RANDOM.initKMeans(DataSource<T> bds,
T[] clusters) |
Modifier and Type | Method and Description |
---|---|
IntRAC |
IntRAC.cluster(DataSource<int[]> data) |
Modifier and Type | Method and Description |
---|---|
ByteCentroidsResult |
RandomSetByteClusterer.cluster(DataSource<byte[]> data)
Selects K elements from the provided
DataSource as the centroids of the clusters. |
ByteCentroidsResult |
RandomByteClusterer.cluster(DataSource<byte[]> data)
Selects K elements from the provided
DataSource as the centroids of the clusters. |
DoubleCentroidsResult |
RandomSetDoubleClusterer.cluster(DataSource<double[]> data)
Selects K elements from the provided
DataSource as the centroids of the clusters. |
DoubleCentroidsResult |
RandomDoubleClusterer.cluster(DataSource<double[]> data)
Selects K elements from the provided
DataSource as the centroids of the clusters. |
FloatCentroidsResult |
RandomSetFloatClusterer.cluster(DataSource<float[]> data)
Selects K elements from the provided
DataSource as the centroids of the clusters. |
FloatCentroidsResult |
RandomFloatClusterer.cluster(DataSource<float[]> data)
Selects K elements from the provided
DataSource as the centroids of the clusters. |
IntCentroidsResult |
RandomIntClusterer.cluster(DataSource<int[]> data)
Selects K elements from the provided
DataSource as the centroids of the clusters. |
IntCentroidsResult |
RandomSetIntClusterer.cluster(DataSource<int[]> data)
Selects K elements from the provided
DataSource as the centroids of the clusters. |
LongCentroidsResult |
RandomLongClusterer.cluster(DataSource<long[]> data)
Selects K elements from the provided
DataSource as the centroids of the clusters. |
LongCentroidsResult |
RandomSetLongClusterer.cluster(DataSource<long[]> data)
Selects K elements from the provided
DataSource as the centroids of the clusters. |
ShortCentroidsResult |
RandomSetShortClusterer.cluster(DataSource<short[]> data)
Selects K elements from the provided
DataSource as the centroids of the clusters. |
ShortCentroidsResult |
RandomShortClusterer.cluster(DataSource<short[]> data)
Selects K elements from the provided
DataSource as the centroids of the clusters. |
Modifier and Type | Method and Description |
---|---|
IntRandomForest |
IntRandomForest.cluster(DataSource<int[]> data) |
Modifier and Type | Class and Description |
---|---|
class |
SampleBatchByteDataSource
A batched datasource
|
class |
SampleBatchIntDataSource
A batched datasource
|
Modifier and Type | Method and Description |
---|---|
void |
SGD.train(DataSource<DATATYPE> data) |